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  Abstract       El Niño-Southern Oscillation (ENSO) is the strongest interannual signal that is produced by basin-
scale processes in the tropical Pacifi c, with signifi cant eff ects on weather and climate worldwide. In the past, 
extensive and intensive international eff orts have been devoted to coupled model developments for ENSO 
studies. A hierarchy of coupled ocean-atmosphere models has been formulated; in terms of their complexity, 
they can be categorized into intermediate coupled models (ICMs), hybrid coupled models (HCMs), and 
fully coupled general circulation models (CGCMs). ENSO modeling has made signifi cant progress over 
the past decades, reaching a stage where coupled models can now be used to successfully predict ENSO 
events 6 months to one year in advance. Meanwhile, ENSO exhibits great diversity and complexity as 
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observed in nature, which still cannot be adequately captured by current state-of-the-art coupled models, 
presenting a challenge to ENSO modeling. We primarily reviewed the long-term eff orts in ENSO modeling 
continually and steadily made at diff erent institutions in China; some selected representative examples are 
presented here to review the current status of ENSO model developments and applications, which have been 
actively pursued with noticeable progress being made recently. As ENSO simulations are very sensitive to 
model formulations and process representations etc., dedicated eff orts have been devoted to ENSO model 
developments and improvements. Now, diff erent ocean-atmosphere coupled models have been available in 
China, which exhibit good model performances and have already had a variety of applications to climate 
modeling, including the Coupled Model Intercomparison Project Phase 6 (CMIP6). Nevertheless, large 
biases and uncertainties still exist in ENSO simulations and predictions, and there are clear rooms for their 
improvements, which are still an active area of researches and applications. Here, model performances of 
ENSO simulations are assessed in terms of advantages and disadvantages with these diff erently formulated 
coupled models, pinpointing to the areas where they need to be further improved for ENSO studies. These 
analyses provide valuable guidance for future improvements in ENSO simulations and predictions.  

  Keyword : El Niño-Southern Oscillation (ENSO); coupled ocean-atmosphere models; simulations and 
predictions; model biases and uncertainties 

 1 INTRODUCTION 

 El Niño is referred to anomalous warming of sea 
surface temperature (SST) in the eastern-central 
equatorial Pacifi c Ocean, and the Southern Oscillation 
(SO) is referred to the diff erences in sea level pressure 
(SLP) across the tropical Pacifi c Ocean. Their 
combination coins the El Niño-Southern Oscillation 
(ENSO), which occurs irregularly every 2–7 years 
(Chao, 1993). As the largest interannual signal 
originating from the coupled ocean-atmosphere 
interactions in the tropical Pacifi c, ENSO signifi cantly 
aff ects weather and climate all over the world. 

 In the past several decades, ENSO has been 
extensively and intensively investigated; signifi cant 
progress has been made in ENSO studies (e.g., 
McCreary and Anderson, 1991; Neelin et al., 1992; 
Philander, 1999; McPhaden et al., 2006). Before the 
1960s, the El Niño and SO phenomena were separately 
analyzed as two independent signals in the ocean and 
atmosphere, respectively; some basic characteristics 
of interannual anomalies for SST and atmospheric 
surface fi elds (e.g., SLP) were identifi ed based on 
limited observations. In the late 1960s, it has been 
recognized that the El Niño and SO phenomena are 
two closely related aspects of the same large-scale 
ocean-atmosphere interaction processes in the tropical 
Pacifi c (Bjerknes, 1969), setting up a new era when 
these two phenomena are studied as a whole from 
simple statistical analyses to dynamical diagnostic 
analyses. The interactions among SST, sea surface 
winds and the thermocline were illustrated in the 
tropical Pacifi c (the so-called thermocline feedback 

or Bjerknes feedback; Bjerknes, 1969; Wyrtki, 1975). 
In the 1970s and 1980s, highly idealized conceptual 
models and simplifi ed ocean-atmosphere coupled 
models were formulated and used to understand 
ENSO processes, including oceanic equatorial waves 
(the Kelvin waves and Rossby waves), instability 
theories of coupled ocean-atmosphere interactions in 
the tropics, and so on (Pacanowski and Philander, 
1981; Battisti and Hirst, 1989). As extensive 
observational data became available at that time, they 
were analyzed to characterize a canonical pattern of 
ENSO evolutions and cycling from the onset, to the 
developing, mature, and decaying stages (Rasmusson 
and Carpenter, 1982). Several theories have been 
proposed to explain the ENSO cycling nature 
involving positive and negative feedbacks within the 
tropical Pacifi c climate system, including the delayed 
action oscillator (Suarez and Schopf, 1988; Battisti 
and Hirst, 1989), the recharge/discharge oscillator 
(Wyrtki, 1975; Jin, 1997), the western Pacifi c 
paradigm (Weisberg and Wang, 1997), and the 
convergence and advection oscillators (Picaut et al., 
1997). The advances in the theoretical understanding 
of ENSO processes and mechanisms lead to model 
developments; essential processes underlying the 
ENSO phenomenon have been identifi ed and 
incorporated into coupled ocean-atmosphere models.  

 A series of international collaboration programs 
and initiatives have greatly advanced ENSO studies, 
including the Tropical Oceans and Global Atmosphere 
(TOGA) Program and the Climate Variability and 
Predictability (CLIVAR) Programs etc. (e.g., 
Trenberth et al., 1998; Wallace et al., 1998). For 
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example, a hierarchy of ENSO models has been 
developed to synthesize observations and process 
understanding, forming a solid mathematical basis for 
ENSO simulations. In terms of complexity, coupled 
models can be classifi ed into highly idealized 
conceptual models, simplifi ed intermediate coupled 
models (ICMs) and hybrid coupled models (HCMs), 
and fully coupled general circulation models 
(CGCMs), respectively. In particular, various coupled 
models have been successfully used for ENSO 
simulation and prediction (Zebiak and Cane, 1987; 
Barnett et al., 1993; Chen et al., 1995; Zhang et al., 
2003, 2005b; Barnston et al., 2012; Zhang and Gao, 
2016). The combined progresses in observations, 
process understanding, and model developments lead 
to realizations of ENSO real-time predictions using 
coupled models; now more than 20 models have been 
routinely used to make real-time ENSO predictions 
6 months to 1 year in advance (see https://iri.columbia.
edu/our-expertise/climate/forecasts/enso/current/). 
Overall, the current coupled models with data 
assimilation techniques can provide eff ective 
predictions of ENSO-related warm and cold SST 
anomalies in the tropical Pacifi c 6–12 months ahead 
(Chen et al., 1995; Fedorov et al., 2003; Jin et al., 
2008; Barnston et al., 2012; Zhu et al., 2012; Zhang 
and Gao, 2016).  

 As our understanding of ENSO has been getting 
deepened and more practice of real-time ENSO 
predictions has been carried out extensively, new 
challenges emerge in ENSO modeling. For example, 
ENSO is observed to exhibit great diversity and 
complexity (Zhang et al., 1998; Yu and Kao, 2007; 
Yeh et al., 2009, 2014; Capotondi et al., 2015; Chen et 
al., 2015; Feng et al., 2015; Timmermann et al., 2018; 
Xie et al., 2018), and it can be modulated by various 
forcing and feedback eff ects (e.g., Kang et al., 2017a). 
It has been recognized that ENSO can have diff erent 
fl avors with ENSO events evolving diff erently from 
canonical events as described in Rasmusson and 
Carpenter (1982). In 1982–1983, for instance, an 
unexpected strong El Niño event took place in the 
tropical Pacifi c; this event evolved strikingly 
diff erently from previous canonical El Niño events, 
including its onset time and the way SST anomalies 
propagated across the equatorial Pacifi c. Also, the 
recent strong 2015 El Niño evolved strikingly 
diff erently from the previous extreme events of 1997–
1998 and 1982–1983 in terms of formation and 
warming pattern. For example, the 2015 El Niño 
event was preconditioned by a weak warming in the 

central equatorial Pacifi c in early 2014, a pause in the 
warming in mid and late 2014, and then amplifi ed 
dramatically in spring 2015 as second-year warming, 
which peaked in late 2015 (e.g., Zhang and Gao, 
2016; Zhu et al., 2016). Currently, the occurrences of 
these diff erent types of El Niño cannot be satisfactorily 
explained by classical ENSO theories; yet current 
coupled models still have diffi  culties in depicting 
ENSO diversities (Zhang et al., 1998; Cai et al., 
2018). Many factors have been identifi ed that can 
aff ect the way ENSO evolves, including westerly 
wind bursts, the global warming eff ects and the 
interactions between natural climate variability and 
human-induced climate changes (Lian et al., 2014; 
Chen et al., 2015; Tan et al., 2020). However, specifi c 
processes responsible for ENSO changes have not 
been understood well, presenting a great challenge to 
process understanding and accurate modeling of 
ENSO. 

 Indeed, large biases and uncertainties still exist in 
ENSO simulations and predictions. For several 
decades, some systematic biases have been persisted 
in climate models, as indicated in the recently released 
Coupled Model Intercomparison Project Phase 6 
(CMIP6) simulations participating in the 
Intergovernmental Panel for Climate Change (IPCC) 
Assessment Report (Eyring et al., 2016). For example, 
the state-of-the-art coupled models still experience 
noticeable large model biases in simulations of mean 
state, seasonal variations and interannual variability 
associated with ENSO. In terms of ENSO prediction, 
coupled models indicated substantial discrepancies in 
real-time prediction. For instance, there was a false 
alarm in predicting the 2014–2016 warm conditions 
in the tropical Pacifi c, which embarrassed the 
scientifi c community. As described above, in reality, 
the weak warm SST anomalies observed in early 2014 
did not evolve into a strong El Niño event in late 
2014; but a strong El Niño event was predicted to 
occur in late 2014 by many coupled models. For the 
actual occurrence of one of the strongest events in 
history, the predictions of the 2015 El Niño event 
using coupled models exhibited large biases in its 
onset throughout spring 2015 and the rapid warming 
in mid-2015 (Zhang and Gao, 2016; Zhu et al., 2016). 
Additionally, the predicted intensity of the 2015 event 
in summer and fall 2015 spread widely across coupled 
models, which indicate that there exist large 
intermodal diff erences and uncertainties in ENSO 
simulations. Further investigations reveal that there 
are large diff erences in El Niño prediction skills from 
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one decade to another, with low predictability in the 
2000s compared with the 1980s, which may refl ect 
decadal changes in ENSO predictability (Chen et al., 
1995; Kirtman and Schopf, 1998; Tang et al., 2008; 
Hu et al., 2013; Zheng et al., 2016; Luo et al., 2017). 
However, specifi c responsible processes have not 
been understood well.  

 In summary, various coupled models, being as the 
most powerful tool for simulating and predicting 
ENSO, have been developed for uses in ENSO 
studies, which diff er in dynamical formulations, 
processes parameterizations, resolution, and so on. 
However, current models still have diffi  culty in 
depicting ENSO diversity, whose processes have not 
been identifi ed clearly. Systematic biases and large 
uncertainties still exist in ENSO simulations and 
predictions in coupled models. The inability for 
current coupled models to make real-time ENSO 
predictions presents a great challenge to ENSO 
modeling, indicating an urgent need for model 
improvements. All these challenges have stimulated a 
continued interest in ENSO research in the world. 
Indeed, dedicated eff orts have been devoted to model 
developments for ENSO in the past several decades. 
Specifi cally, various ICMs, HCMs, and CGCMs have 
been carefully tuned so that they have been able to 
realistically depict ENSO evolution and the related 
climate variability. In particular, CGCMs without bias 
and/or fl ux corrections have been now available and 
used for diff erent purposes with a variety of 
applications to climate modeling as evident in the 
CMIP6 simulations. Furthermore, the integrated 
eff orts of observing, process understanding and model 
developments of ENSO have led to capacity building 
of real-time ENSO and related climate predictions 
(Mu and Ren, 2017). 

 The motivation of this article is to review ENSO 
model developments and its simulations. The large 
numbers of ENSO-related modeling studies make it 
impossible for us to do so in this brief review. Rather, 
our primary focus here is placed on the progress 
recently made at some selected institutions in China, 
which have been continually and actively pursuing 
ENSO model developments with a variety of 
successful applications. As evident recently, the 
model performances for ENSO and climate 
simulations have been steadily improved, including 
physical parameterizations, fi ning spatial and 
temporal resolutions, and others. In the following, 
several coupled models having their reasonably good 
ENSO simulations at a few institutions in China are 

reviewed. Note that there are several other ENSO-
related review papers focusing on diff erent aspects of 
ENSO in the literatures, including McCreary and 
Anderson (1991), Webster and Yang (1992), Delecluse 
et al. (1998), Neelin et al. (1998), Stockdale et al. 
(1998), Philander (1999), Latif et al. (2001), 
AchutaRao and Sperber (2002), Guilyardi et al. 
(2004), Jin et al. (2008), Barnston et al. (2012), 
Capotondi et al. (2015), Tang et al. (2018), 
Timmermann et al. (2018), Wang (2018), Fang and 
Xie (2020), Ren et al. (2020), and others.   

 The rest of the paper is organized as follows. 
Section 2 presents an overview of the coupled 
modeling of ENSO. In terms of complexity, ICMs, 
HCMs, and CGCMs are described in Sections 3, 4 
and 5, respectively. Summary and discussion are 
given in Section 6. 

 2 AN OVERVIEW OF COUPLED OCEAN-
ATMOSPHERE MODELING FOR ENSO 

 Numerical models provide the mathematical basis 
for ENSO studies. As ENSO simulation skills are 
strongly model dependent on dynamical formulations, 
process parameterizations, resolution, and so on, 
various coupled models in the past several decades 
have been developed to represent ocean-atmosphere 
interactions responsible for the existence of ENSO. 
The most complicated models used for ENSO studies 
are primitive equations-based atmosphere general 
circulation models (AGCMs) and ocean general 
circulation models (OGCMs), which include 
comprehensive process parameterizations. 
Meanwhile, considering the ENSO-related variability 
characteristics, atmospheric and oceanic models can 
be eff ectively simplifi ed for use in ENSO studies not 
only for computational effi  ciency, but also for 
facilitations of physical understanding and process 
illustrations.  

 On the atmospheric side, statistical and dynamical 
models have been used. Statistical atmospheric 
models can be adequately adopted in ENSO modeling 
because the ENSO-related atmospheric anomalies 
can be treated as a feedback response to interannual 
SST variability in the tropical Pacifi c. For example, 
statistical models, constructed from historical data 
using statistical methods, have been successfully 
applied to the coupled modeling of ENSO. Another 
justifi cation of using statistical atmospheric model for 
ENSO studies lies in the diffi  culties in representing 
atmospheric convection processes in an AGCM that 
could bring uncertainties and errors in wind 
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simulations and correspondingly in ENSO simulations 
and predictions (Zhu et al., 2017); so the related 
problem could be implicitly avoided by using a 
statistical atmospheric model. In terms of atmospheric 
dynamical models, AGCMs are primitive equation-
based comprehensive models, which are very time-
consuming to run. Historically, simplifi ed atmospheric 
dynamical models have been widely used for 
representing atmospheric characteristic responses to 
ENSO-induced SST variability in the tropical Pacifi c, 
including the shallow water equation-based model. In 
particular, considering the vertical structure of 
atmospheric anomalies during ENSO evolution, a 
two-layer approximation can be taken in the vertical 
direction to depict the characteristic atmospheric 
responses to SST anomalies, which can be solved by 
using the shallow water equation-based model; this 
has been clearly illustrated by Gill (1980), Zebiak and 
Cane (1987), and others. Practical simulations 
indicate that these simplifi ed atmospheric models 
work extremely well for ENSO modeling, being able 
to capture essential atmospheric responses associated 
with ENSO evolution.  

 On the oceanic side, dynamical models need to be 
considered for representing ENSO processes because 
of the importance of oceanic dynamics to ENSO; 
various dynamical ocean models have been formulated 
to study ENSO, including comprehensive OGCMs 
that are complicated in its formulation and expensive 
to run. Basically, ocean models can be divided into 
level ocean models (e.g., Modular Ocean Model 
(MOM) Version 3 (MOM3); Pacanowski and Griffi  es, 
1998) and layer ocean models (e.g., Gent and Cane, 
1989), in terms of vertical coordinates adopted in 
their dynamical formulations (e.g., Zhang and Zebiak, 
2002; Zhu and Zhang, 2018). Diff erent simplifi cations 
for ENSO modeling have been eff ectively made for 
the ocean, including approximations of reduced 
gravity, shallow water and linearization etc. (e.g., 
Moore and Philander, 1977; Busalacchi and O’Brien, 
1980). For example, the existence of a well-defi ned 
vertical structure of upper-ocean thermal responses 
makes a two-layer approximation work well for 
simplifying the complicated ocean responses to 
surface winds in the vertical. In particular, a modal 
decomposition in the vertical can be performed to 
simplify the problem solving for upper-ocean 
responses to atmospheric wind forcing, with only a 
few vertical modes being retained to adequately 
depict main response features (e.g., Zebiak and Cane, 
1987; Keenlyside and Kleeman, 2002). Again, such 

simplifi ed considerations in the ocean modeling for 
ENSO are not only for computational effi  ciency, but 
also for being amenable for clear illustrations of 
processes involved.  

 These individual oceanic and atmospheric models 
are used to perform ocean-only and atmosphere-only 
experiments for ENSO-related simulations. When 
forced by prescribed atmospheric forcing fi elds 
(surface wind stress, heat fl ux and freshwater fl ux), 
ocean models can capture SST anomalies associated 
with El Niño and La Niña events and their transitions. 
When forced by prescribed oceanic forcing fi elds 
(i.e., SST), atmosphere models can depict surface 
wind stress fi elds, etc. in association with the SO. As 
ENSO originates from the ocean-atmosphere coupling 
in the tropical Pacifi c, coupled models are required 
for use in representing ENSO. When the ocean and 
atmosphere models come to be coupled together; 
however, good performances of each oceanic and 
atmospheric component model cannot guarantee that 
ENSO can be adequately captured well in their 
coupled cases. In fact, the way ENSO can be depicted 
in coupled models depends not only on the 
performances of individual component model of the 
ocean and atmosphere, but also collectively on 
coupled interactions arising from the tropical Pacifi c. 
Various factors have been identifi ed that can aff ect 
ENSO performance in coupled models. Practically, 
atmospheric and oceanic models need to be very 
carefully tuned when they are coupled together so that 
responsible processes for ENSO cycling can be 
adequately represented in a balanced way, including 
the well-defi ned phase relationships between 
interannual anomalies, various positive and negative 
feedbacks, and underlying processes etc. In particular, 
as a critically important component, great cares have 
been devoted to ocean models that are tuned specially 
for ENSO process representations, being able to 
sustain ENSO cycles in the climate system of the 
tropical Pacifi c.  

 Combinations of these diff erently formulated 
oceanic and atmospheric models lead to diff erent 
types of coupled models in the past several decades, 
which are widely used to investigate ocean-
atmosphere interactions and ENSO. In terms of 
complexity, coupled models can be categorized into 
ICMs, HCMs, and CGCMs (e.g., Zebiak and Cane, 
1987; Kleeman, 1993; Latif  and Yamagata, 1993; 
Chen et al., 1995; Latif et al., 1998; Stockdale et al., 
1998; Zhang and Gao, 2016). As the most complicated 
coupled models, CGCMs are referred to as a coupled 
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model in which primitive equation-based AGCMs 
and OGCMs are both used for the atmosphere and 
ocean. Relative to CGCMs which are computationally 
expensive, ICMs and HCMs are simplifi ed models, in 
which a kind of simplifi ed anomaly model is adopted 
for the atmospheric or oceanic component, 
respectively. ICMs are formed by coupling both 
simplifi ed oceanic and atmospheric models. For 
example, Zebiak and Cane (1987) formulated an ICM 
in which the Gill-type atmospheric steady dynamical 
model is coupled to a linear two-layer oceanic 
dynamical model; this is the fi rst dynamical model 
used for ENSO prediction experiments (Cane and 
Zebiak, 1985; Cane et al., 1986). In a more complicated 
confi guration, HCMs are also simplifi ed models, in 
which one component is taken as a simple anomaly 
model, whereas the other component is general 
circulation model (GCM)-based. For instance, an 
HCM can be formed by coupling an atmospheric 
statistical model with an OGCM (e.g., Zhang, 2015a, 
b). On the other way around, another type of HCMs 
can be formulated by coupling a simplifi ed dynamical 
oceanic model with an AGCM (Hu et al., 2019). 

 There are obvious advantages and disadvantages 
when using these various coupled models with 
diff erent degrees of complexity, ranging from 
simplifi ed to CGCM-based models. Computing 
effi  ciency is one aspect to be considered, as well as 
model performances and facilitating clear and easy 
ways for physical understanding and process 
illustrations. For example, consisting of OGCMs and 
AGCMs, CGCMs include comprehensive processes 
and are susceptible to climate drift because the full 
coupling is realized between the ocean and 
atmosphere. In ICMs and HCMs, one component is 
constructed to be an anomaly form and anomaly 
coupling is adopted, being very helpful for avoiding 
climate drift problems and having good model 
performances of ENSO simulations and predictions. 
So, simplifi ed coupled models of ENSO have been 
widely used not only for time effi  ciency, but also for 
being amenable to process understanding and 
interpretations as refl ected in Gill (1980), Zebiak and 
Cane (1987), and others.  

 Intensively dedicated eff orts have been devoted to 
model developments for ENSO in China in the past 
several decades. Currently, various coupled models 
have been available with a variety of successful 
applications, including physical understanding and 
realistic simulations. For instance, coupled models 
have been used successfully for ENSO simulations 

and participations in the CMIP6. Now, the state-of-
the-art models are used to examine a variety of forcing 
and feedback mechanisms responsible for ENSO 
modulations, depict the spatial structure and time 
evolution of ENSO, the well-defi ned relationships 
among oceanic and atmospheric fi elds, and even to 
make real-time ENSO predictions, and climate 
predictions and projections. In the following, several 
examples of ENSO models that currently have been 
used actively for ENSO simulations and predictions 
in China are selected and described in detail. 

 3 ICM SIMULATIONS OF ENSO  
 Intermediate coupled models (ICMs) are referred 

to as a particular type of simplifi ed ENSO models, 
which are distinguished by being intermediate in 
complexity between highly idealized conceptual 
ENSO models and comprehensive CGCMs (Zebiak 
and Cane, 1987; Kang and Kug, 2000; Zhang et al., 
2003; Song et al., 2018). One basic feature of such an 
ICM is its anomaly formulation in which only 
interannual perturbation fi elds of the atmosphere and 
ocean are calculated directly, whereas seasonally 
varying climatological fi elds are specifi ed from the 
corresponding observations. An apparent advantage 
of such an anomaly-focused approach lies in the fact 
that many processes with primary importance to the 
mean climatology (e.g., deep ocean processes, small 
and meso-scale processes etc.) may be not critical to 
ENSO and thus there is no need to explicitly represent 
their relative contributions to ENSO modeling. That 
is to say, for ENSO-related interannual modeling, 
there is no explicit need for caring much of processes 
responsible for the mean climatology; rather, only 
interannual relationships between atmospheric and 
oceanic anomalies and the underlying processes are 
represented in these simplifi ed models. 

 An ICM can be formed by coupling a simple 
atmospheric model with a simple oceanic model. For 
the atmosphere, dynamical and statistical models are 
adopted. For instance, a simple two-layer 
approximation can be taken to represent the vertical 
structure of atmospheric responses to SST anomalies 
as in the Gill (1980) model; also, statistical 
atmospheric models can be used for ENSO modeling 
by constructing statistical relationships between 
interannual anomalies of SST and other atmospheric 
fi elds from historical data using common statistical 
methods (i.e., singular value decomposition (SVD)). 
For the ocean, ocean models need to be dynamical 
because oceanic dynamics are critically important to 
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ENSO. Considering the response characteristics in 
the upper ocean of the tropics, simplifi ed dynamical 
ocean models have been adopted. For example, the 
upper ocean can be approximated as a two-layer 
structure, whose dynamics have been understood well 
(Gill, 1980) and numerical solutions can be easily 
obtained by using the shallow water equation-based 
model. In addition, within the ICM framework, full 
ocean-depth thermodynamics are not necessary to be 
considered; instead, only SST is taken into account to 
represent the surface layer thermodynamics. Further, 
an SST anomaly model can be formulated to depict 
interannual SST variability, which is embedded into a 
simplifi ed dynamical ocean model. 

 These simplifi ed component models are coupled 
through an anomaly coupling for the ocean and 
atmosphere: SST anomalies, directly produced by its 
anomaly model, force the atmosphere to produce 
surface wind variations, which in turn aff ect the ocean 
(including the ocean circulation and thermocline),  
leading to changes in SST. As crucially important to 
SST, subsurface and thermocline eff ects on SST need 
to be adequately represented. Within the ICM context, 
the subsurface entrainment temperature ( T  e ) into the 
surface mixed layer is an explicitly expressed variable, 
which can be parameterized in terms of the thermocline 
variability (as represented by sea level (SL)) due to 
their close relationships (Wyrtki, 1975).  

 One well-known ICM is that developed by Zebiak 
and Cane (Zebiak and Cane, 1987; ZC87 thereafter), 
the fi rst dynamical model that is used for ENSO 
prediction (Cane et al., 1986) and has been pioneering 
in ENSO studies. More specifi cally, the ZC87 adopted 
a two-layer linear shallow water approximation to 
represent the ocean-atmosphere system in the tropical 
Pacifi c. Atmospheric component is a steady dynamical 
model based on the Gill model; the ocean component 
is based on the linear shallow water dynamics. A 
nonlinear SST submodel is incorporated into the 
dynamical ocean model to represent the eff ects of 
various processes on SST; the subsurface entrainment 
temperature ( T  e ) anomaly fi eld is parameterized by its 
analytical relationship with the thermocline 
variability. As an anomaly model, the interactions 
between the ocean and atmosphere are realized by 
anomaly coupling, in which the mean seasonal 
climatologies of SST and vertical gradient of 
temperature etc. are prescribed from observations. 
Therefore, a modeling focus is placed on primary 
processes important to SST interannual variability. 
Such a simplifi ed coupled model can bypass the so-

called climate drift problems, which are commonly 
seen in CGCMs. As have been demonstrated, the 
ZC87 can very successfully depict SST variability 
associated with El Niño (e.g., Zebiak and Cane, 
1987), and thus has been widely applied to ENSO 
studies (e.g., Mu et al., 2007). Moreover, the ZC87 
has been further simplifi ed into a type of conceptual 
models, in which the governing equations of ENSO 
can be further reduced to the maximum degree of 
simplicity so that semi-analytical solutions can even 
be obtained, in which only essential features of ocean-
atmosphere anomalies and their interactions are 
retained to represent ENSO. These derived conceptual 
models have been extremely helpful for theoretical 
analyses and process illustrations (e.g., Jin, 1997; Jin 
and An, 1999). More recently, the tropical Pacifi c 
ZC87 model has been extended to include the Indian 
Ocean to examine interannual variability in the Indian 
Ocean and its eff ects on that in the tropical Pacifi c 
(Song et al., 2018). 

 In China, such a type of ICMs was formulated at 
the Institute of Oceanology/Chinese Academy of 
Sciences (IOCAS) for ENSO-related modeling 
studies (denoted as the IOCAS ICM; Zhang and Gao, 
2016). The IOCAS ICM is an anomaly model 
consisting of an intermediate ocean model (IOM) and 
a statistical model for atmospheric wind stress 
anomalies (Fig.1). Its dynamic ocean component is an 
intermediate-complexity model developed by 
Keenlyside and Kleeman (2002) based on a baroclinic 
modal decomposition method in the vertical direction 
(McCreary, 1981). In contrast to the commonly used 
ZC87, this relatively newly developed ICM accounts 
for the spatially varying stratifi cation and the realistic 
vertical structure of the upper ocean (e.g., ten vertical 
modes are included). In addition, nonlinear eff ects of 
the momentum equations for ocean currents are 
partially considered so that the zonal and meridional 
currents in the equatorial oceans can be more 
realistically depicted. An SST anomaly model is 
incorporated into the ocean dynamical model to 
represent the thermodynamic processes of the surface 
mixed layer. One striking feature of the IOCAS ICM 
is the way the temperature of subsurface water 
entrained into the mixed layer ( T  e ) is parameterized. 
An optimized procedure is developed to depict  T  e  
using an inverse approach based on the SST anomaly 
equation of the ICM and its empirical relationship 
with SL variability (Zhang et al., 2005a). The ICM 
has been carefully tuned so that it can reproduce 
sustained ENSO, involving the interactions between 
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the ocean and atmosphere in the tropical Pacifi c. The 
ICM has its big computational advantage relative to 
HCMs and CGCMs, and yet the performance of 
ENSO simulations is satisfactorily good (Fig.2). 

 The IOCAS ICM has already been successfully 
used for ENSO simulations and predictions. For 
example, this model is one of the coupled models that 
made a good prediction of the cold SST conditions 
during 2010–2012 in the tropical Pacifi c (Zhang et al., 
2013). After optimizing the model performance in 
terms of ENSO simulations and retrospective ENSO 
predictions (Gao et al., 2016; Zhang and Gao, 2016), 
the IOCAS ICM has been routinely used to predict 
the SST evolution in the tropical Pacifi c since August 
2015 (for more detail, see https://iri.columbia.edu/
our-expertise/climate/forecasts/enso/current/). A real-
time ENSO prediction example is given in Fig.3. 
Also, this ICM has been used for ENSO-related data 
assimilation and predictability studies (Zheng et al., 
2006; Gao et al., 2016, 2018; Tao et al., 2018; Tao and 
Duan, 2019; Mu et al., 2019). 

 Historically, simplifi ed ICMs have played a very 
important role in the developments of ENSO 
understanding and predictions. Such a level of 
simplifi ed model not only allows for realistic ENSO 
simulations and straightforward comparisons against 
observations, but also is amenable to model tuning 
and process illustrations. Certainly, such simplifi ed 

ICMs with their anomaly formulation have limited 
applicability, particularly in such a situation where 
both mean climatology and interannual anomaly 
fi elds for the ocean and/or atmosphere need to be 
determined by the models themselves. Therefore, 
more comprehensive coupled models need to be used, 
in which total fi elds of oceanic and atmospheric states 
(both climatology and interannual anomalies) can be 
adequately determined by the model itself. Also, there 
are many important multiple processes responsible 
for ENSO modulations that need to be taken into 
account, such as atmosphere stochastic forcing and 
ocean biology-induced heating (e.g., Zhang et al., 
2008; Lian et al., 2014; Zhang, 2015a; Kang et al., 
2017a); so it is necessary to use AGCMs and OGCMs 
for comprehensive ENSO modeling. 

 4 HCM SIMULATIONS OF ENSO 
 As categorized to be the so-called HCM, its level 

of complexity lies between ICMs and CGCMs (Neelin 
et al., 1992; Neelin and Jin, 1993; Barnett et al., 1993; 
Syu et al., 1995; Chang et al., 2001; Tang, 2002; 
Zhang and Busalacchi, 2009; Zhu et al., 2009, 2013; 
Zhang, 2015b). Basically, two types of HCMs can be 
formulated, depending on whether an AGCM or 
OGCM is used for the atmospheric component or 
oceanic component, respectively. Here, HCM AGCM  is 
referred to as an HCM in which an AGCM is coupled 
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 Fig.1 Schematic diagrams showing the structures of the IOCAS ICM and HCM AGCM  
 In the ICM (the left panel), a statistical atmospheric model for wind stress ( τ ) interannual anomaly ( τ  inter ) is coupled with a simplifi ed ocean model, consisting 
of a dynamical ocean model, an SST anomaly (SSTA) model, and an empirical anomaly model for  T  e , respectively. The  τ  inter  model is constructed using a 
singular value decomposition (SVD) analysis technique based on interannual anomalies of SST and  τ  from historical data. In this ICM, anomaly fi elds are 
directly produced with anomaly coupling being taken: SSTA model directly gives rise to SST anomalies, which are used to obtain  τ  inter  from its statistical  τ  
model; the  τ  inter  fi eld is then used to force the ocean model to yield ocean anomalies (SST, currents, SL fi elds etc.). Then, SL anomaly is used to calculate  T  e  
anomaly, which aff ects SSTA. In the HCM AGCM  (the right panel), an AGCM (the ECHAM5) is coupled with a simplifi ed intermediate ocean model (IOM). 
Here, the ocean component is the same as that of the IOCAS ICM (the left panel); the atmospheric component is the ECHAM5, the fi fth version of the 
European Centre for Medium-Range Weather Forecasts (ECMWF) model developed by the Max Planck Institute for Meteorology. These two component 
models are coupled by employing an anomaly coupling strategy: the IOM directly produces SST anomalies, which are superimposed onto observed SST 
climatology (SST clim ) to form total SST fi elds (SST=SST clim +SST inter ), which are used to force the AGCM; the AGCM yields total wind stress fi elds, whose 
interannual anomalies ( τ  inter ) are extracted relative to the AGCM’s climatology (i. e.,  τ  inter = τ – τ  clim ); then, the  τ  inter  fi eld is used to force the ocean. Some seasonally 
varying climatological fi elds are prescribed for uses in the anomaly coupling:  τ  clim  from the AGCM simulation and SST clim  from observation, respectively. 
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with a simplifi ed dynamical ocean model; HCM OGCM  
is referred to as an HCM in which an OGCM is 
coupled with a simplifi ed atmospheric model 
(statistical or dynamical). Because one component of 
such an HCM is taken as an anomaly form in which 
only interannual perturbation fi elds are considered for 
the atmosphere or ocean; an anomaly coupling is 
adopted for representing interactions between the 
atmosphere and ocean, in which seasonally varying 
observed climatological fi elds are prescribed for use. 
For the HCM AGCM , the AGCM produces total surface 
wind fi elds, whose interannual anomalies are 
calculated relative to their corresponding 
climatological fi elds of the AGCM; the resultant wind 
anomalies are used to force the simple ocean model to 
produce interannual SST anomalies directly, which 

are combined with observed SST climatologies to 
force the AGCM. For the HCM OGCM , the OGCM 
produces total SST fi elds, whose interannual 
anomalies are calculated relative to the corresponding 
climatological SST fi eld of the OGCM; the resultant 
interannual SST anomalies are used to force a simple 
atmospheric model to produce interannual anomalies 
of wind stress, which are combined with observed 
climatologies of wind stress to force the OGCM. 
Evidently, the HCM shares some advantages with the 
ICMs, as described above. For example, because one 
component for the ocean or atmosphere is taken as an 
anomaly model, an anomaly coupling is realized 
between the ocean and atmosphere, in which observed 
climatologies are prescribed; this approach helps to 
bypass climate drift problem that is commonly faced 
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in CGCM-based simulations. In addition, such a 
simplifi ed HCM is computationally effi  cient to run in 
time integration.  

 This type of coupled models makes it suitable and 
highly effi  cient for addressing some of the fundamental 
questions regarding coupled behaviors of air-sea 
interactions in the tropics. For example, as interannual 
anomaly fi elds are explicitly separated from total 
fi elds, the HCM allows for interannually varying 
coupled forcing and feedback eff ects on ENSO to be 
isolated and examined in a clean way. Neelin et al. 
(1992) formulated such an HCM OGCM , which consists 
of a level OGCM (The MOM type of OGCMs 
developed by Geophysical Fluid Dynamics Laboratory 
(GFDL)/NOAA) and an atmospheric steady 
dynamical model; this HCM was used to investigate 
fundamental behaviors of coupled interannual 
variability associated with ENSO, including the 
relationships between the changes in coupling 
parameters (representing forcing and feedback 
intensities) and the ways interannual oscillations are 
sustained. In a very early stage, this type of model is 

also used for ENSO predictions (e.g., Barnett et al., 
1993). Historically, such type of coupled models has 
made great contributions to ENSO understanding and 
prediction studies. Currently, this type of simplifi ed 
HCMs remains valuable and powerful tools for 
understanding the tropical air-sea interactions 
associated with interannual and decadal variability of 
the climate system. Two types of such simplifi ed 
HCMs have been formulated in China, which have 
been used for ENSO modeling; some results are 
briefl y described in this subsection as follows.  

 4.1 An HCM AGCM  consisting of an AGCM and an 
intermediate ocean model (IOM) 

 One HCM has been recently formulated (the right 
panel in Fig.1), denoted as HCM AGCM , in which a 
simplifi ed intermediate ocean model (IOM) is coupled 
with an AGCM (Hu et al., 2019). The ocean 
component used is the oceanic component model of 
the IOCAS ICM as described above (Fig.1); the 
atmospheric component is the ECHAM5, the fi fth 
version of the European Centre for Medium-Range 

 Fig.3 The predictions (colored lines) of the Niño 3.4 SST anomalies for the period 2020-21, which are made from mid-May 
2020 as initial condition using diff erent coupled models, including the IOCAS ICM and BCC-CSM1.1m  
 These model predictions are collected at International Research Institute for Climate and Society/Climate Prediction Center (IRI/CPC). Each colored 
line indicates a 3-month running mean of the 12-month predictions (the symbol FMA etc. in the  x -axis is denoted for February-March-April, ASO 
is denoted for August-September-October, and so on). The Niño 3.4 SST index is obtained by averaging SST anomalies in the region (5°S–5°N; 
170°W–120°W). This fi gure is taken directly from the IRI website at https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/. 
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Weather Forecasts (ECMWF) model developed by 
the Max Planck Institute for Meteorology (Roeckner 
et al., 2003). These two component models are 
coupled by employing an anomaly coupling strategy 
because the ocean model is formulated as an anomaly 
form (Fig.1): the IOM directly produces SST 
anomalies, which are added onto observed SST 
climatology (SST clim ) to form total SST fi elds, which 
are used to force the AGCM; the AGCM produces 
total wind stress ( τ ) fi elds, whose interannual 
anomalies are extracted relative to the AGCM’s 
climatology ( τ  inter = τ – τ  clim ), and then are used to force 
the ocean. In addition to its computational advantage 
relative to CGCMs, the HCM AGCM  is also climate 
drift-free because of using anomaly coupling, with 
which observed seasonal climatology of SST is 
prescribed from observations and only oceanic 
perturbation fi elds are calculated directly from the 
ocean model; this confi guration presents a constraint 
on the HCM, which has less freedom to evolve. The 
use of the AGCM allows for considerations of 
atmospheric stochastic forcing eff ects and atmospheric 
teleconnection due to remote dynamical responses. 
Note that the anomaly ocean model is adopted in the 
HCM AGCM  confi guration, which allows us to focus on 
primary processes that are only important to SST 
interannual variability in the tropical Pacifi c, without 
the explicit need for caring much of those responsible 
for the mean climatology in the ocean.  

 Currently, a regional HCM AGCM  is formulated, in 
which active ocean-atmosphere coupling is allowed 
only in the tropical Pacifi c although a global AGCM 
is used, which can depict global atmospheric 
responses to SST anomalies in the tropical Pacifi c. A 
long-term simulation (more than 100 years) has been 
performed using the HCM AGCM ; its simulation skills 
for ENSO are evaluated using SST over the tropical 
Pacifi c (Fig.2). The HCM AGCM  produces irregular 
ENSO events with a broad spectrum of oscillation 
periods between 2 and 5 years, which is attributed to 
the use of an AGCM. The amplitude and evolution of 
ENSO events and the phase locking of interannual 
SST anomalies to the annual cycle are reproduced 
realistically. Also, the ENSO-related SST eff ects on 
interannual variability of the global atmosphere can 
be well depicted (Hu et al., 2019). Despite the slightly 
stronger amplitude of SST variability over the central 
Pacifi c in the HCM AGCM  compared with the observed, 
the simulated ENSO-related response patterns in the 
atmosphere are in good resemblance with the 
corresponding observations. In particular, the use of 

the global AGCM in the HCM AGCM  allows for 
examining remote eff ects of tropical SST anomalies 
on weather and climate in the subtropics and 
midlatitude regions, which are realized through the 
Hadley cell and wave trains in the atmosphere. Thus, 
teleconnection patterns of climate anomalies around 
the globe can be investigated, which are aff ected by 
SST anomalies in the tropical Pacifi c, including the 
Pacifi c and North America (PNA) patterns. These 
simulated atmospheric response patterns in the 
HCM AGCM  are similar to what is observed in nature. 
Therefore, this HCM AGCM  can not only depict the 
ENSO-related interactions over the tropical Pacifi c, 
but also reproduce ENSO-induced global atmospheric 
variability, thereby providing a useful modeling tool 
for studying ENSO-related coupling in the tropical 
Pacifi c and remote infl uences on the atmosphere 
globally. 

 4.2 An HCM OGCM  consisting of an OGCM and an 
atmospheric statistical model 

 Another type of HCM is formulated for the tropical 
Pacifi c, consisting of an OGCM and a simple 
statistical model for the atmosphere (Fig.4), denoted 
as HCM OGCM  (Zhang and Busalacchi, 2009; Zhang, 
2015a). The atmospheric statistical model for wind 
stress, which is constructed using SVD analyses, is 
the same as that used in the IOCAS ICM (Fig.1). The 
OGCM is based on Gent and Cane (1989), which is a 
reduced gravity, primitive equation-based layer ocean 
model: the uppermost layer is considered to be a 
mixed layer (ML) and the layers below are divided 
according to sigma coordinates (the ratio of each 
layer to the total layer thickness is fi xed to be 
constant). Chen et al. (1994) embedded a bulk ML 
model into the ocean model, in which the depth of the 
ML ( H  m ) is considered as a prognostic model variable 
that is directly predicted using the embedded bulk ML 
model. These atmospheric and oceanic component 
models are coupled by employing an anomaly 
coupling strategy: SST anomalies are obtained from 
the OGCM simulations relative to the OGCM’s 
climatology (SST inter =SST–SST clim ); an atmospheric 
statistical model is used to calculate the corresponding 
wind stress anomalies ( τ  inter ), which are combined 
with observed climatological wind stress ( τ = τ  clim + τ  inter ) 
to force the OGCM. In addition to its computational 
advantage relative to CGCMs, the model is climate 
drift-free because anomaly coupling is taken with 
observed climatology of wind stress being prescribed 
from observations. That is, the use of seasonally 
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varying climatological fi elds from observations (e.g., 
 τ  clim ) in the anomaly coupling acts to impose a 
constraint on the coupled system, which has less 
freedom to evolve in HCMs.   

 Note that this layer ocean model-based HCM has 
some important features that are diff erent from other 
level ocean model-based HCMs (e.g., Neelin et al., 
1992; Tang, 2002). For example, our layer OGCM 
explicitly takes into account the mixed layer 
dynamics: the fi rst layer is treated as a mixed layer, 
whose depth is predicted explicitly as a model 
prognostic variable by using a bulk mixed layer model 
(Kraus and Turner, 1967). One consequence of such a 
confi guration in the layer ocean model is that the way 
atmospheric forcing is applied to the upper ocean is 
diff erent from level ocean models (Zhang and Zebiak, 
2002). For instance, in the layer ocean model-based 
HCM, the ML depth is directly aff ected by wind stress 

and buoyancy fl ux (Q B ; the combination of heat fl ux 
and freshwater fl ux). In contrast, the eff ect of Q B  on 
the depth of the ML is not explicitly aff ected in the 
level ocean model based-HCM (e.g., the MOM3). 
The eff ects of freshwater representations (including 
Q B ) on ocean and coupled simulations have been 
examined (Kang et al., 2017b; Gao et al., 2020) 

 The use of the comprehensive OGCM for the 
HCM OGCM  allows for ocean processes-focused 
modeling studies. For example, we formulated one 
regional HCM to represent interactions among the 
atmosphere, ocean physics and ocean biogeochemistry 
(AOPB) in the tropical Pacifi c (Zhang et al., 2018). 
As shown in Fig.4, the atmospheric component is a 
statistical feedback model representing responses to 
SST anomalies, and the oceanic component model 
also includes ocean biological processes. Based on 
this HCM AOPB, various experiments have been 
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 Fig.4 A schematic diagram illustrating a hybrid coupled model (HCM OGCM ), including the atmosphere and ocean physics 
and biology (AOPB) in the tropical Pacifi c 
 The HCM OGCM  consists of a statistical atmospheric model for wind stress interannual anomalies ( τ  inter ), an OGCM and an ocean biology model. The 
statistical  τ  inter  model is constructed using the SVD analysis technique, written as  τ  inter = a  τ · F (SST inter ), in which  a  τ    is an introduced scalar coeffi  cient 
to represent the coupling strength (taken as 1.0); SST inter  is SST anomalies;  F  represents the relationship between interannual anomalies of SST 
and  τ  which is determined by the SVD analysis based on historical data. In this HCM OGCM , the OGCM produces total SST fi eld, whose interannual 
anomalies (SST inter ) are extracted relative to the OGCM’s climatological fi elds (e.g., SST inter =SST–SST clim , in which SST clim  is climatological SST from 
the OGCM simulation); then, SST inter  is used to calculate  τ  inter  using its statistical model; the  τ  inter  fi eld is then superimposed onto  τ  clim  to form the total 
wind stress fi eld ( τ = τ  clim + τ  inter ), which is used to force the OGCM. Some seasonally varying climatological fi elds are prescribed:  τ  clim  from observation 
and SST clim  from the OGCM simulation, respectively. Furthermore, the climate system is also coupled with an ocean biology model that determines 
ocean chlorophyll (Chl), which aff ects the penetration of solar radiation in the upper ocean. Interactions between the ocean and atmosphere are 
realized by SST and wind stress etc., and those between the ocean physics and biology are represented by Chl, respectively. 
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performed to illustrate ENSO modulations induced 
by oceanic processes, including ocean chlorophyll-
induced modulating eff ects on the penetration of 
shortwave radiation in the upper ocean. The HCM OGCM  
has been used to systematically investigate ocean 
biology-induced heating feedback onto the climate, 
including biological eff ects on ENSO at diff erent 
feedback intensities. Figure 5 shows an example for 
the simulated interannual anomalies of some fi elds 
from the HCM AOPB (Tian et al., 2018; Zhang et al., 
2018). As evident from the HCM OGCM , ENSO 
simulated is quite regular because the atmospheric 
model adopted is a statistical model, in which 
stochastic wind forcing is not taken into account. In 
addition, wind stress is considered to be a feedback 
response to SST variability, without considering 
atmospheric dynamical processes explicitly and 
remote teleconnetion eff ects in the atmosphere. In 

addition, the active coupling is only allowed within 
the tropical Pacifi c; so, such a model confi guration 
does not permit the investigation of global atmospheric 
teleconnection that can be aff ected by SST variability 
in the tropical Pacifi c. In this regards, AGCMs need to 
be used for the coupling, in which the infl uences of 
atmospheric stochastic forcing and the comprehensive 
atmospheric dynamics and teleconnection can be 
adequately represented. These processes can be taken 
into account by using CGCMs. 

 5 CGCM SIMULATION 
 Moving to the most complicated category of 

coupled models, fully coupled GCMs (CGCMs) are 
formed by coupling an AGCM with an OGCM in a 
straightforward way. Total fi elds of SST and surface 
winds etc. are completely determined by the CGCM 
itself, which are directly used for the coupling 
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between the ocean and atmosphere: wind stress, heat, 
and freshwater fl uxes at the interface are used to drive 
the ocean, whereas total SST fi elds are used to force 
the atmosphere. The CGCM-based simulations can 
provide comprehensive descriptions of the oceanic 
and atmospheric states. Compared with other types of 
simplifi ed models (e.g., ICMs and HCMs as described 
above), one obvious disadvantage in using CGCMs 
which include comprehensive processes is that 
CGCM-based simulations are very expensive to 
perform in time integration. In particular, the 
enormous computer resources demanded by CGCMs 
make it diffi  cult to conduct numerous simulations 
needed to examine interannual behaviors associated 
with ENSO. Obviously, the complexities in the 
AGCM, OGCM and their fully coupled confi guration 
also make it diffi  cult to clearly delineate processes 
involved in ENSO evolution and the coupled 
interactions among diff erent components of the 
climate system. Practically, it is quite diffi  cult for 
CGCMs to have a good performance for ENSO 
simulations because climate drift problems can occur 
to mix up the numerical solutions. Indeed, intensive 
cares are highly required to tune CGCMs for having 
reasonable ENSO simulations.  

 In the early developmental stage, CGCMs suff er 
from serious problems in coupled climate modeling, 
including climate drift and systematic biases in 
simulations of mean state, seasonal, and interannual 
variations (e.g., Zhang et al., 1995). Even at present, 
some major challenges are still faced in many CGCM 
simulations, including the double Intertropical 
Convergence Zone (ITCZ) problem, cold SST biases 
in the eastern equatorial Pacifi c, and others. The 
existence of these problems can be attributed to the 
fact that CGCMs are fully and directly coupled 
between the ocean and atmosphere; no constraint is 
imposed on the coupled system, in which the climate 
states in the CGCMs can have the freedom to evolve. 
To avoid climate drift, correction or anomaly coupling 
can be adopted. In terms of ENSO modeling, the 
performance of CGCMs is still not satisfactory at 
present. These simulation discrepancies indicate that 
some natural processes associated with forcings and 
feedbacks are not represented well in the coupled 
system.  

 In the past, intensive and extensive developmental 
eff orts have been devoted to improvements in CGCMs 
at some institutions in China, making a continual and 
steady progress. In the past several decades, CGCMs 
have been carefully tuned so that they are able to 

capture self-sustained interannual oscillations 
associated with ENSO. Recently, great progress has 
been made in CGCMs, as represented by the recent 
release of CMIP6 in which full coupling between the 
ocean and atmosphere is executed without fl ux and 
bias corrections. The state-of-the-art CGCMs have a 
variety of successful applications to climate modeling, 
including interannual variability studies associated 
with El Niño, climate simulations and projection 
studies associated with future climate change, and so 
on. Such modeling eff orts have been underway at 
several institutions in China and CGCM-based ENSO 
studies have been conducted, which will be briefl y 
described below.  

 5.1 CGCM-based activities at LASG/IAP 

 In the past several decades, dedicated model 
developments have been pursued at the state key 
Laboratory of numerical modeling for Atmospheric 
Sciences and Geophysical fl uid dynamics (LASG), 
Institute of Atmospheric Physics (IAP), Chinese 
Academy of Sciences (e.g., Zeng, 1979). OGCM and 
AGCMs have been developed at LASG/IAP, which 
have some unique characteristics diff erent from others 
in terms of the dynamical formulation and numerics, 
including the calculation of the departures of 
thermodynamic variables by subtracting the standard 
stratifi cation in the vertical, total available energy 
consideration, and so on. 

 For example, the IAP OGCM is the fi rst free 
surface OGCM that was developed in the world, with 
successful applications to simulations of the basin-
scale ocean general circulation and climate (e.g., 
Zeng, 1979). Note that before the late 1980s, a rigid 
lid approximation was taken in basin-scale OGCMs 
used for the ocean and climate modeling (e.g., Haney, 
1974; Bryan et al., 1975; Cox, 1975; Manabe et al., 
1979; Han, 1984; Philander and Seigel, 1985; Latif, 
1987; Philander et al., 1987; Rosati and Miyakoda, 
1988; Gordon and Corry, 1991; Semtner and Chervin, 
1992). That is, the ocean surface is considered to be 
fi xed, which is thus called as rigid-lid. Correspondingly, 
the sea surface boundary condition for vertical 
velocity in the rigid-lid OGCMs is set to zero and thus 
gravy waves are fi ltered out. In reality, however, the 
sea surface moves up and down, changing with time 
and space. Physically, as pointed out by Zeng et al. 
(1991), the rigid-lid approximation is artifi cially 
introduced into the ocean models, which thus can 
induce errors in ocean simulations. Setting vertical 
velocity to be zero is equivalent to removing the 
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divergence of vertical mean fl ow from all scales of 
motion, including the large-scale barotropic Rossby 
waves. As a result, this artifi cial constraint excludes 
the sea surface height-related available surface energy 
part and its conversion to kinetic energy, possibly 
leading to a distortion of the energy conversion and 
cycle in the ocean. Consequently, it might introduce 
errors in the computation of surface elevation and 
currents, propagation of very long waves, and so on. 
Mathematically, the artifi cially introduced rigid-lid 
approximation presents a constraint on the ocean 
model with non-divergence of the vertically averaged 
mean fl ow; a special computational procedure is 
needed to obtain barotropic component of the solution 
of OGCMs with the rigid-lid approximation.  

 To address these issues existing in the rigid-lid 
OGCMs used at that time, a free surface OGCM was 
formulated and successfully used for basin-scale 
ocean simulations in the late 1980s at LASG/IAP, 
CAS (e.g., Zeng et al., 1991). The free surface IAP 
OGCM allows for removing the rigid-lid surface 
condition and thus permits explicit prediction of sea 
level topography as a prognostic variable. To achieve 
stability and effi  ciency in solving the primitive 
equation-based OGCM without the rigid-lid 
approximation, several time integration schemes were 
also developed for the free surface IAP OGCM, 
including a barotropic-baroclinic mode-splitting 
algorithm, the semi-implicit scheme for time 
integration. Also, the spatial fi nite-diff erence schemes 
were formulated, which keep total potential available 
energy conservation and its conversion to other 
energy components (Zeng, 1979), which presents 
eff ective constraints on long-term time integration for 
such a free surface ocean model. The performance of 
free surface OGCMs had been assessed by conducting 
ocean-only and coupled ocean-atmosphere modeling 
experiments (e.g., Zhang and Liang, 1989; Zeng et 
al., 1991; Zhang et al., 1992; Zhang and Endoh, 1992, 
1994). At fi rst, such a free surface OGCM is thought 
to be enormously time consuming; but it turns out that 
using numerical schemes mentioned above, the 
computation of the free surface OGCM could be 
carried out at least as effi  ciently as that of the rigid-lid 
one. The IAP OGCM has had a variety of applications, 
including simulations of annual mean circulation of 
the world ocean (Zhang and Liang, 1989), of annual 
mean and seasonal cycle and interannual variability 
in the tropical Pacifi c Ocean (Zhang and Endoh, 1992, 
1994), and so on. The simulated results show that the 
IAP OGCM is able to reproduce not only the observed 

current system and thermal structure and their 
variations, but also the actual sea level in the tropical 
Pacifi c, which shares many satellite-derived sea 
surface features.  

 Following the success in the free surface OGCM 
activities at LASG/IAP, other ocean modeling groups 
began to develop free surface OGCMs in the early 
1990s. Some techniques developed for the free-
surface IAP OGCM are adopted by other institutions 
to develop OGCMs without the rigid-lid approximation 
(e.g., Killworth et al., 1991; Dukowicz and Smith, 
1994). For example, in the release of the MOM3 at 
GFDL/NOAA (Pacanowski and Griffi  es, 1998), one 
new improved feature in MOM3 relative to its 
previous version (MOM2) includes the implementation 
of an explicit free surface treatment. Now, OGCMs 
with the free surface have been widely used in the 
world.  

 Based on the free surface OGCM framework, great 
progress has been made in coupled climate modeling 
at LASG/IAP. A series of CGCMs have been 
developed, which have contributed to the multiple 
phases of the Coupled Model Inter-comparison 
Project (CMIP; Taylor et al., 2012; Eyring et al., 
2016). A family of Flexible Global Ocean-
Atmosphere-Land System Model (FGOALS) 
CGCMs has been developed for climate modeling at 
LASG/IAP. Specifi cally, three generations of the 
FGOALS CGCMs have been developed at LASG/
IAP since 2002. The fi rst generation is FGOALS-g1.0 
(Yu et al., 2004, 2008, 2011); its oceanic component 
is the IAP OGCM used in the LASG/IAP Climate 
System Model version 1.0 (LICOM1.0; Liu et al., 
2004) and its atmospheric component is the Grid-
point Atmospheric Model of IAP/LASG version 1.0 
(GAMIL1.0; Wang et al., 2004). Then, the second 
generation of FGOALS CGCMs includes two 
versions, respectively denoted as FGOALS-g2 (Li et 
al., 2013b; Yu et al., 2013) and the other denoted as 
FGOALS-s2 (Bao et al., 2013), diff ering in the 
atmosphere; here, -g stands for the grid-point model 
and -s stands for the spectral model, respectively. 
Here, the oceanic component is the same as LICOM2.0 
(Liu et al., 2014), but two diff erent atmospheric 
components are used, one called as GAMIL2.0 (Li et 
al., 2013a) for FGOALS-g2 and the other called as 
the Spectral Atmospheric Model  of IAP LASG 
version 2.0 (SAMIL2.0) (Bao et al., 2013; Liu et al., 
2014) for FGOALS-s2, respectively. Now, the third 
generation has been recently developed for two 
parallel versions FGOALS-g3 (Li et al., 2020) and 
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FGOALS-f3-L (Guo et al., 2020), in which the same 
oceanic component model (denoted as LICOM3.0; 
Yu et al., 2018) and two atmospheric component 
models (denoted as GAMIL3.0 and the Finite-volume 
Atmospheric Model of the IAP/LASG version 3.0 
(FAMIL3.0); Li et al., 2019, 2020) were respectively 
employed.  

 These diff erent versions of the FGOALS CGCMs 
developed at LASG/IAP since 2002 have had a variety 
of applications to climate simulations and projections. 
In particular, they have contributed to the multiple 
phases of the CMIP. For example, the coupled model 
FGOALS-g1.0 contributed to CMIP3 (Yu et al., 2004, 
2008, 2011), the two versions FGOALS-g2 and 
FGOALS-s2 contributed to CMIP5, and the recent 
two versions FGOALS-g3 and FGOALS-f3-L 
contributed to CMIP6 (Lin et al., 2019), respectively.  

 As an interest for this review article, we here focus 
on ENSO simulations and some examples for ENSO 
modeling studies are given below. To synthesize the 
overall performance of ENSO simulations in the three 
generations of the FGOALS CGCMs, we present 
comparisons for some basic ENSO features between 
the observation and simulations. To facilitate the 
comparison, g1, g2, s2, g3 and f3-L were denoted to 
as FGOALS-g1.0, FGOALS-g2, FGOALS-s2, 
FGOALS-g3, FGOALS-f3-L, respectively; here, the 
number indicates the version of the FGOALS 
CGCMs, and -g stands for grid-point AGCM and -s 
stands for spectral AGCM, respectively. 

 Figure 6 shows the spatial pattern of the standard 
deviation of SST variability over the tropical Pacifi c. 
The degree to which ENSO simulations are 
evolutionarily improved can be clearly seen from 
early version FGOALS-g1.0 to the next version. For 
example, although the early versions can depict 
interannual variability associated with ENSO, large 
biases exist as shown in Fig.6. FGOALS-g1.0 shows 
extremely strong and regular ENSO, characterized by 
a single peak at approximately 3 years. The SST 
variability simulated by the fi rst generation of 
FGOALS (i.e., as indicated by g1 in Fig.6) shows 
severely overestimated interannual variability over 
the central and eastern equatorial Pacifi c (Fig.6b), 
indicating the overly large ENSO amplitude.  

 After its improvements, FGOALS-g2 shows 
improved performance in simulating the overall 
ENSO behaviors. As clearly seen in Bellenger et al. 
(2014) for comparisons among the CMIP5 models, 
FGOALS-g2 exhibits excellent performance in 
simulating ENSO features, including its amplitude, 

the spatial structure and spectrum of SST variability, 
and phase-locking with seasonal cycles. Chen et al. 
(2016) analyzed the reasons for the improvement of 
ENSO simulation in FGOALS-g2 compared with its 
predecessor FGOALS-g1.0 in detail. The improved 
simulation of ENSO amplitude can be mainly 
attributed to the reasonable representation of the 
thermocline and thermodynamic feedbacks, which 
could be traced back to the more realistic basic state 
simulations in FGOALS-g2 than those in 
FGOALS-g1. In particular, the simulated deeper 
mean thermocline in FGOALS-g2 results in a 
weakened thermocline response to the zonal wind 
stress anomaly, and the looser vertical stratifi cation of 
mean temperature leads to a reduced response of 
anomalous subsurface temperature to anomalous 
thermocline depth, both of which cause the more 
realistic thermocline feedback in FGOALS-g2. On 
the other hand, the alleviated cold bias of mean SST 
leads to more reasonable thermodynamic feedback in 
FGOALS-g2. In addition, the change from the regular 
ENSO oscillation in FGOALS-g1.0 to the somewhat 
irregular ENSO oscillation in FGOALS-g2 primarily 
arises from the fact that the atmospheric high-
frequency “noise” (e.g., westerly wind bursts) is 
simulated relatively well in FGOALS-g2. 

 In general, all the fi ve of FGOALS CGCMs capture 
the spatial distribution features of ENSO as observed. 
The specifi c standard deviations of the Niño3 index 
and Niño4 index derived from the observation and the 
fi ve simulations are listed in Table 1. The 
improvements from one version of the FGOALS 
CGCMs to the next version are striking. For example, 
the overestimation of ENSO amplitude is alleviated 
to some extent in s2 and f3-L (Fig.6c & e). It is evident 
that the ENSO amplitude reproduced by both g2 and 
g3 (Fig.6d & f) is now comparable to the observation, 
compared with the early version.  

 We further present the standard deviation of 
Niño3.4 for each calendar month (Fig.7), which can 
be used to indicate the ENSO phase locking feature. 
As shown in Fig.7a, ENSO-related SST variability 
usually peaks during boreal winter. It is exciting to 
note that all the fi ve FGOALS CGCMs capture the 
feature of ENSO phase locking very well. Note that 
more than half of the CGCMs in CMIP5 archive have 
diffi  culty in reasonably representing the ENSO phase-
locking feature (Ham and Kug, 2014). Figure 7b 
shows the power spectra of the Niño3.4 index for the 
observation and fi ve simulations from the 
corresponding versions of the FGOALS CGCMs. The 
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power spectra of the observed Niño3.4 index are 
characterized by multiple peaks at around 3–5 years, 
while the counterparts in g1 and f3-L are characterized 
by a single peak at approximately 3 years. Such 
defi ciency in ENSO periodicity simulation has been 
alleviated in the other three versions (i.e., s2, g2, and 
g3) to some extent.  

 Some biases still exist and further improvements 
are underway. For example, the spatial structure of 
SST variability indicates some discrepancies 
compared with observations. Also, all the fi ve 
simulations cannot reproduce the observed positive 
skewness well, as shown in Table 1. This indicates 
that the ENSO asymmetry is underestimated in all the 
simulations. It is worth mentioning that the 

 Table 1 The standard deviation of Niño SST indices and the 
skewness, estimated from observations and 
simulations using diff erent versions of the Flexible 
Global Ocean-Atmosphere-Land System Model 
(FGOALS) CGCMs developed at LASG/IAP 

Product  Niño3 Std (K)  Niño4 Std (K)  Niño3 Skewness (K) 

 OBS  0.88  0.66  0.64 

 FGOALS-g1.0  1.96  1.76  -0.16 

 FGOALS-s2  1.16  0.93  0.15 

 FGOALS-g2  0.92  0.52  0.00 

 FGOALS-f3-L  1.51  1.06  0.16 

 FGOALS-g3  0.99  0.73  -0.21 

 The SST datasets analyzed here are same as those used in Fig.6. 
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underestimation in ENSO asymmetry still remains 
prevalent in almost all the CGCMs in CMIP5 (Yu et 
al., 2013). At the same time, the FGOALS CGCMs 
have had a variety of successful applications, which 
can be found in the related publications (Yu et al., 
2013); the CMIP-related applications and products 
are available from the CMIP website for the FGOALS 
CGCM simulations. 

 5.2 CGCM-based activities at FIO 

 One CGCM was developed at the First Institute of 
Oceanography (FIO), the Ministry of Nature 
Resources of China; its Earth System Model (ESM) 
version 1.0 (FIO-ESM v1.0) has been successfully 
used for climate modeling, including participation in 
the CMIP5 (Qiao et al., 2013). One striking feature 
with the FIO-ESM v1.0 is that the ocean surface wave 
eff ects occurring at the air-sea interface are explicitly 
taken into account, which is realized by embedding 
an ocean surface wave model into an OGCM to 
represent the non-breaking surface wave-induced 
vertical mixing (Qiao et al., 2004). Specifi cally, the 
FIO-ESM v1.0 consists of the Community Atmosphere 
Model Version 3 (CAM3), the Community Land 
Model Version 3.5 (CLM3.5), the Los Alamos 
National Laboratory sea ice model Version 4 (CICE4), 
the Parallel Ocean Program Version 2.0 (POP2.0), 
and the Marine Science and NUmerical Modeling 
(MASNUM) surface wave model; see Qiao et al. 
(2016) for the related references in more detail. The 
horizontal resolutions of the model are as follows: 
T42 (about 2.875°) for both CAM3 (with 26 vertical 
layers) and CLM3.5, a nominal 1° (about 1.125° in 

longitude and 0.27°−0.54° in latitude) with the North 
Pole displaced to Greenland for POP2.0 (with 40 
vertical layers) and CICE4, and 2° for the MASNUM 
surface wave model (with a resolution of 30° for wave 
direction). The detailed descriptions of the FIO-ESM 
v1.0 can be found in Qiao et al. (2013).  

 Previously, the role of ocean surface waves has not 
been explicitly considered in climate and earth system 
models. It is the fi rst time that in 2013 the non-
breaking surface wave vertical mixing eff ects are 
adequately incorporated in the FIO-ESM v1.0 for 
climate modeling (Qiao et al., 2013). Comparisons 
with and without the wave eff ects indicate that climate 
simulations in the FIO-ESM v1.0 have been 
reasonably improved, such as the sub-tropical mixed 
layer depth, heat content in the upper ocean, and so on 
(Chen et al., 2018, 2019). Moreover, surface wave 
eff ects act to signifi cantly reduce tropical biases that 
have been long standing in all climate models, 
including too cold simulations of annual mean SST 
fi eld and its seasonal cycle in the eastern equatorial 
Pacifi c (Song et al., 2012, 2014).  

 In terms of ENSO simulations, the FIO-ESM v1.0 
exhibits good performance, including ENSO 
irregularity, spatial distributions of SST variability, 
and ENSO prediction skill (Song et al., 2015). For 
example, the wavelet analysis of Niñ o3.4 index shows 
that the FIO-ESM v1.0 can depict a broad spectral 
peak in the range of 2-7 years with double peaks 
around 3 and 5 years (Fig.1b), which is basically 
consistent with what is observed in the HadISST 
(Fig.1a). However, there are obvious discrepancies 
compared with observations, which is demonstrated 
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to be related to the simulated biases of SST mean state 
in the tropical region (Chen et al., 2019). For example, 
the simulated amplitude of SST variability (about 
2°C) is much stronger than the observed (about 1°C). 
In addition, a spurious amplitude peak emerges in 
boreal summer, although the largest SST anomalies 
occur in boreal winter during ENSO evolution (Fig.8a 
& b). The FIO-ESM v1.0 can capture the basic 
characteristics of ENSO, but still suff ers from 
common simulation biases that are similar to other 
CMIP5 simulations. Therefore, the model needs to be 
improved to reduce these simulation biases. 

 As previous studies indicated, simulation skills of 

the OGCMs can be substantially improved by 
including non-breaking wave-induced vertical 
mixing. Therefore, three more distinctive physical 
processes-related air-sea interactions were considered; 
a new FIO-ESM v2.0 version was confi gured by 
including the eff ects of the Stokes drift on momentum 
and heat fl uxes, the sea spray on air-sea heat fl ux and 
the SST diurnal cycle, respectively. Besides 
incorporating these new physical processes, the 
model components and resolutions were also 
upgraded relative to the FIO-ESM v1.0. For example, 
the AGCM of the FIO-ESM v2.0 is the CAM5, but 
with the Finite-Volume (FV) dynamical core; its 
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To be continued
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horizontal resolution is 0.9°×1.25°, with 30 vertical 
layers, which has a much higher resolution than that 
of the FIO-ESM v1.0. The land surface model is 
upgraded from CLM3.5 to CLM4.0 with the same 
horizontal resolution as in the CAM5. The OGCM is 
the POP2 with the horizontal resolution of 1.1°×(0.27–
0.54°), which is the same as that in the FIO-ESM 
v1.0, but the vertical layers are increased from 40 to 
61 layers with the fi rst layer being defi ned at the sea 
surface (0 m) for the SST diagnoses that are based on 
the parameterization of SST diurnal cycle (Yang et 
al., 2017). The ocean surface wave model is the 
MASNUM surface wave model (Qiao et al., 2016), 
with its horizontal resolution increasing from 2° to 
1.1°×(0.27–0.54°), which is the same as that of the 
POP2 and CICE4. The coupling frequency is also 

increased for each component model. The atmosphere, 
land surface, and sea ice components exchange 
information with the coupler every 30 min, while the 
ocean and wave models exchange information with 
the coupler at 3 h intervals. The details of the FIO-
ESM v2.0 can be found in Song et al. (2019). 
Currently, FIO-ESM v2.0 has participated in the 
CMIP6. 

 Compared with the FIO-ESM v1.0, the fi rst 
preliminary inspection indicates that the simulation 
biases in the FIO-ESM v2.0 are eff ectively reduced, 
especially in the tropical region, where the SST biases 
can be reduced by half relative to the FIO-ESM v1.0 
(Song et al., 2019). Moreover, the simulation skills of 
ENSO events are also greatly improved. As shown in 
Fig.8c, the FIO-ESM v2.0 not only can capture the 

 Fig.8 Continued 
b. FIO-ESM v1.0

∆
S

S
T

 (
K

)
P

er
io

d
 (

y
ea

r)
V

ar
ia

n
ce

 (
K

2
/u

n
it

 f
re

q
.)

3

3

4

5

8

2

2

50

1

1

1 2 3 4 5 6 7 8 J F M A M J J A S O N D0

0

-1

-2

-3

10

20

0

Averaged over years 1870 to 2005

40

12 24 36 48

60

80

100
Power spectrum Autocorrelation Variance (K2)

0.0

0.5

1.0

1.5

2.0

3.0

2.5

10

10 30 50

15 20 25 30 35 40 45 50 55 60 70

(K2)

65

1874 1884 1894 1904 1914 1924 1934 1944
Year

1954 1964 1974 1984 1994 2004

0

1

-1

Period (year) Lag (month) Month

Global wavelet

spectrum

Variance (K2)

To be continued



Vol. 38950 J. OCEANOL. LIMNOL., 38(4), 2020

broad spectral peak in the range of 2–7 years, but also 
the ENSO irregularity and amplitude that are much 
more reasonable than those in the FIO-ESM v1.0. For 
instance, the simulated amplitude of SST variability 
decreases from 2°C in the FIO-ESM v1.0 to 1.2°C in 
the FIO-ESM v2.0, a defi nite improvement compared 
with the observed SST variability (which is 1.0°C). In 
particular, the spurious peak of SST variability in 
boreal summer is eliminated in the FIO-ESM v2.0. 
These preliminary results are encouraging for the 
improvements brought by incorporating the surface 
wave processes and SST diurnal cycle in the air-sea 
interaction in the CGCM. The related dynamical 
reasons for the improvements in terms of ENSO 
simulations in the FIO-ESM v2.0 need to be 
investigated in the future.  

 The FIO-ESM v1.0 has been further used for 

ENSO prediction experiments. Using an ensemble 
adjusted Kalman fi lter assimilation scheme, an 
operational short-term climate prediction system has 
been set up to predict ENSO events with ten ensemble 
members (Song et al., 2015). The hindcast results for 
the period of 1992–2014 showed that this system has 
high predictability for ENSO events (Fig.9). For 
instance, the correlation coeffi  cients/root mean square 
errors (RMSEs) of Niñ o-3.4 index between hindcast 
results and observations respectively are 0.96/0.23°C, 
0.87/0.46°C, and 0.77/0.60°C at the 1-, 3-, and 
6-month lead times (Song et al., 2015), which is 
comparable to other dynamical CGCMs. Moreover, 
this climate prediction system also shows good skills 
in real-time ENSO prediction (e.g., 2015/16 El Niño 
event); the prediction results are routinely provided to 
the National Marine Environmental Forecasting 

 Fig.8 Continued 
c. FIO-ESM v2.0
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Center (NMEFC) since November 2016. Currently, 
this climate prediction system is being upgraded to 
the FIO-ESM v2.0; it is expected that the FIO-ESM 
v2.0 should have a better performance in terms of 
ENSO prediction because its simulation skills have a 
signifi cant improvement compared with the FIO-
ESM v1.0.  

 The extent to which the FIO-ESM v2.0 has been 
improved in climate modeling indicates that small-
scale ocean surface wave can play important roles in 
shaping large-scale climate system. Besides the 
eff ects of non-breaking wave-induced vertical mixing, 
the Stokes drift and sea spray, ocean surface waves 
also aff ect the climate system in combinations with 
other processes, such as the changes in the atmospheric 
bottom friction and albedo through the sea surface 
roughness, the atmospheric boundary layer aerosol 
through wave breaking, and the sea ice distribution 
through the surface wave-sea ice interactions (Chen 
et al., 2019). Therefore, the roles of ocean surface 
waves in the climate modeling should be paid more 
attention for better simulation and prediction of the 
climate and particularly ENSO. 

 5.3 CGCM-based activity at CMA 

 One CGCM was formulated at the Beijing Climate 
Center (BCC) in China Meteorological Administration 
(CMA), and the model has been continually improved 
for climate simulations, including ENSO. Started in 
the 1990s, the fi rst version (BCC-CGCM1.0) was built 
up, including an AGCM and OGCM, with fully 
coupling without any fl ux correction, and was used for 
climate simulation and prediction (Ding et al., 2004). 
However, the performance of ENSO simulation with 
the BCC-CGCM1.0 was not good enough and further 
fundamental improvements have been pursued. Then, 
the second generation of BCC climate system models, 
named as BCC-CSM1.1 with a coarse resolution in the 
atmosphere (approximately 2.812 5°×2.812 5°) and 
BCC-CSM1.1m with a medium resolution 
(approximately 1.125°×1.125°) was developed (Wu et 
al., 2010, 2014). The BCC-CSM1.1 and BCC-
CSM1.1m are fully coupled global climate-carbon 
models, including the atmospheric component BCC-
AGCM2.2 (the Beijing Climate Center Atmosphere 
General Circulation Model version 2.2; Wu et al., 
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 Fig.9 Hindcasts of 3-month running mean SST anomalies for the Niño 3.4 region (5°N−5°S, 170°W−120°W) 
 The results are calculated with respect to the 1992−2014 climatology. a. Hindcast time series; black line is for observed SST anomaly, and other colored lines 
are for the predictions made at 1- (red), 2- (blue), 3- (brown), 4- (green), 5- (cyan), and 6-month (purple) lead times; b. RMSE calculated between hindcast and 
observation as a function of lead times; c. correlation between model hindcast and observation as a function of diff erent lead times (from Song et al., 2015). 



Vol. 38952 J. OCEANOL. LIMNOL., 38(4), 2020

2010), land component BCC-AVIM1.0 (Wu et al., 
2014), oceanic component MOM4-L40, and sea ice 
component. These components interact with each 
other through fl uxes of momentum, energy, water, and 
carbon at their interfaces. Both the oceanic and sea ice 
components were developed by GFDL (Griffi  es et al., 
2008), using a tripolar grid with which the latitudinal 
resolution is 1° longitude and the meridional resolution 
ranges from 1/3° latitude between 10°S and 10°N to 1° 
latitude at 30°S/30°N poleward. 

 It turns out that ENSO can be well reproduced in 
BCC-CSM1.1m, including the main features such as 
ENSO intensity, spatial pattern, feedbacks, and 
teleconnections (Ferrett et al., 2020), as well as some 
particular properties such as the ENSO combination 
mode (Ren et al., 2016), and ENSO persistence barrier 
(Tian et al., 2019). However, there are model biases 
which are common to other climate models. For 
example, BCC-CSM1.1m has a simulated ENSO 
scale that is much shorter than the observed (Lu et al., 
2018); an improving eff ort is made later to signifi cantly 
reduce this bias by enhancing the convection 
entrainment process in the atmosphere model, leading 
to ENSO periods that are elongated (Lu and Ren, 
2016, 2019). In addition, BCC-CSM1.1m has 
diffi  culty in distinguishing the two types of El Niño 
(Ren et al., 2019), although this inability can be 
empirically corrected with statistical calibrations 
(Wang et al., 2020). Since 2015, this model has been 
applied to operational ENSO prediction and routine 
products are issued in BCC and IRI/CPC every month 
(Fig.3; Ren et al., 2016). Overall, BCC-CSM1.1m has 
shown its good ability in predicting the 2015–2016 
super El Niño event, as represented in the China 
multi-model ensemble system (Ren et al., 2017, 
2019). Further improvements are clearly needed for 
BCC-CSM1.1m for reducing simulation biases of 
SST and tropical rainfall associated with ENSO.  

 In recent years, BCC-CSM1.1m has been updated 
to the newly developed version of BCC-CSM2-MR 
(Wu et al., 2019), which has been used to conduct 
most experiments of the CMIP6 in BCC (Xin et al., 
2019). The atmospheric component in BCC-CSM2-
MR is updated to BCC-AGCM3-MR (Wu et al., 
2019) at a horizontal resolution of T106 and 46 
vertical layers with its top at 1.459 hPa, and the land 
component is the newly improved version BCC-
AVIM2.0 (Li et al., 2019). The ocean and sea ice 
components in BCC-CSM2-MR are the same as those 
in BCC-CSM1.1m. According to the CMIP historical 
simulations from both models of BCC-CSM1.1m and 

BCC-CSM2-MR, the simulated SST anomaly 
standard deviation in the ENSO key regions from 
BCC-CSM2-MR is weaker than that in BCC-
CSM1.1m. Therefore, the amplitude of the ENSO 
simulated by BCC-CSM2-MR is closer to the 
observation than that simulated by BCC-CSM1.1m 
(Wu et al., 2019). BCC-CSM2-MR improves the 
positive feedback of the thermocline and zonal 
advection, which result from stronger air–sea 
interaction and the amplifi cation of the eff ect of 
atmospheric Bjerknes feedback part. Through 
coupling, the Niño3 SST anomaly rapidly results in a 
zonal wind stress anomaly near the Niño4 region and 
further leads to the change in the depth of the 
thermocline in the equatorial eastern Pacifi c. 
Meanwhile, the Niño3 SST anomaly also results in a 
zonal current anomaly in the equatorial eastern 
Pacifi c, which leads to zonal advection of the mean 
change in SST. 

 6 DISCUSSION AND CONCLUSION 
 ENSO is the strongest interannual variability in the 

tropical Pacifi c, and yet has been identifi ed as the most 
predictable interannual signal in the climate system. 
Extensive and intensive studies for ENSO have been 
conducted in the past, reaching a stage where coupled 
models can now be routinely used for real-time ENSO 
predictions. Indeed, great achievements in ENSO 
studies (from its discovery, to process understanding 
and to real-time prediction) have been recognized as 
one of the most successful examples for scientifi c 
research and applications in Earth sciences (McPhaden 
et al., 2006). Such progresses can be attributed to 
several integrated eff orts. International observing 
networks for the coupled ocean-atmosphere states in 
the tropical Pacifi c have been developed and 
implemented in a real-time manner, with in situ and 
satellite-based measurements such as TOGA, Global 
Ocean Observation System (GOOS) and Argo, etc. 
Physically, ENSO processes have been understood 
very well. 

 As one of the most powerful tools for ENSO studies, 
various coupled models have been developed to 
represent ocean-atmosphere interactions in the tropical 
Pacifi c, diff ering in dynamical formulations and 
process parameterizations. In terms of complexity, 
CGCMs consist of complicated AGCMs and OGCMs, 
which are primitive equation-based and include 
comprehensive processes. Meanwhile, simplifi ed 
coupled models have been formulated for uses in 
ENSO modeling because they can well depict 
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characteristic atmospheric and oceanic responses to 
ENSO, including linear two-layer representations in 
the vertical and shallow water equation model, etc. For 
instance, in simplifi ed ICMs and HCMs, one component 
is taken as a simple anomaly form (i.e., anomaly fi elds 
are directly produced), whereas the other component is 
taken to be AGCM or OGCM; then, an ocean-
atmosphere anomaly coupling is adopted, in which 
observed climatological fi elds are prescribed for use in 
the exchange of fl uxes at the ocean-atmosphere 
interface; this procedure acts as a fl ux correction, which 
helps alleviate climate drift problem. When these 
individual oceanic and atmospheric models are 
coupled, great cares are needed for the coupled 
modeling so that ENSO cycles can be self-sustained by 
the model itself resulting from coupled interactions 
between the atmosphere and ocean in the tropical 
Pacifi c. Indeed, intensive and extensive eff orts have 
been devoted to ENSO model developments and 
improvements in the past several decades. Now, 
various models with diff erent degrees of complexity 
have been available and widely used in ENSO 
modeling, which is strongly model dependent. There 
are advantages and disadvantages of diff erently 
formulated models. For instance, CGCMs are 
expensive to run and may experience the so-called 
climate drift problems due to the fully coupled model 
confi guration. Simplifi ed coupled models (e.g., ICMs 
and HCMs) are effi  cient to run and are free from 
climate drift problems because some observed 
climatological fi elds are used in the anomaly coupling, 
acting as a fl ux correction. Evidently, simplifi ed models 
have been widely used not only for computational 
effi  ciency in time integration, but also for being 
amenable for process illustrations and understanding.  

 Coupled models provide a mathematical basis for 
ENSO simulations and in the past dedicated eff orts 
have been devoted to ENSO model developments. 
The model performances for ENSO and climate 
simulations have been continually improved in the 
past three decades, including physical 
parameterizations, fi ning spatial resolutions, and 
others. For example, comprehensive CGCM-based 
simulations without fl ux corrections can now well 
depict ENSO evolution and climate variability and 
change. Furthermore, coupled models have been 
continually upgraded to the degree that current state-
of-the-art coupled models can be used for ENSO 
predictions. Indeed, the integrated eff orts of observing, 
process understanding and modeling lead to successful 
implements of the real-time prediction system for 

ENSO. Importantly, comprehensive CGCMs provide 
a basis for short-term climate prediction and future 
climate projection under the infl uence of global 
warming as indicated in CMIP6.  

 Nevertheless, great challenges remain in ENSO 
modeling, including long-standing model biases that 
exist in simulations and predictions of ENSO. For 
example, the available CMIP products still exhibit 
systematic model biases and uncertainties in ENSO 
simulations, as indicated in ENSO intercomparison 
project (Latif et al., 2001). The performance of 
CGCMs is still not satisfactory in terms of ENSO 
modeling, with large biases and uncertainties in ENSO 
simulations and predictions. In terms of representing 
ENSO behaviors by using current CGCMs, the main 
biases can be summarized here. First, the simulated 
ENSO events exhibit a large spread in the amplitude 
across diff erently formulated models, ranging from 
half to more than two times of the observed one; these 
large uncertainties can be attributed to model 
dynamical formulations, process representations, and 
so on. Secondly, more than half of the current CGCMs 
have diffi  culty in reasonably representing the ENSO 
phase locking feature (Ham and Kug, 2014). Thirdly, 
the simulated ENSO events tend to have a too regular 
oscillation with a period of near-biennial, rather than 
the observed period of 2–7 years (AchutaRao and 
Sperber, 2002; Guilyardi et al., 2004; Capotondi et al., 
2015). Fourthly, observations indicate that the 
amplitude of El Niño events is usually larger than that 
of La Niña events; yet, the current CGCMs show poor 
performance in reproducing the asymmetry of ENSO 
amplitude between the two phases of ENSO, as 
reported by some recent studies. Fifthly, the current 
CGCMs have diffi  culties in capturing the ENSO 
diversity. As recognized and observed, El Niño can 
have two fl avors in terms of distinct spatial patterns of 
SST variability: one is the canonical El Niño that 
exhibits a SST warming center in the eastern equatorial 
Pacifi c, and the other is the so-called the central Pacifi c 
(CP) El Niño whose warming center tends to occur 
more dominantly in the central Pacifi c. Recent studies 
documented that the current CGCMs still have 
diffi  culty in adequately reproducing the two types of 
El Niño events (e.g., Ham and Kug, 2012; Yeh et al., 
2014; Capotondi et al., 2015).  

 These discrepancies in ENSO simulations using 
CGCMs limit their applicability to ENSO prediction. 
Indeed, in terms of ENSO predictions, CGCMs 
indicate no obvious advantage in prediction skills 
compared with simplifi ed ICMs and HCMs. Bias 
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corrections and/or fl ux corrections are often made to 
enhance prediction skills when using CGCMs for 
ENSO real-time predictions. In fact, bias corrections 
are necessarily needed to extract predictable signals 
from drifted mean climatological fi elds. For example, 
model output statistics (MOS) corrections are often 
used (e.g., Ji et al., 1996). These problems in ENSO 
simulation and prediction remain to be addressed for 
ENSO model developments; clearly, coupled models 
need to be continually improved. 

 There are clear rooms for further improvements in 
ENSO modeling, which has been actively underway. 
For example, coupled model biases can be of oceanic 
origin, atmospheric origin and of coupled origin. 
Previously, various forcings and feedbacks have been 
identifi ed that can aff ect ENSO, involving in processes 
at multiple scales, deterministic and stochastic 
processes, etc. These processes need to be adequately 
included to represent their eff ects on ENSO 
modulations. In particular, as ocean processes play a 
critically important role in successfully depicting 
ENSO, ocean processes need to be adequately 
represented in ENSO modeling, including ocean 
vertical mixing, freshwater fl ux forcing, tropical 
instability waves, ocean biology-induced heating 
feedback and so on (Qiao et al., 2004; Zhang et al., 
2012; Zhang, 2014; Zhi et al., 2015, 2019; Kang et 
al., 2017a; Zhu and Zhang, 2018; Gao et al., 2020). 
Putting all these eff orts together, ENSO simulations 
and predictions can be expected to improve greatly 
and thus satisfactorily meet various scientifi c and 
societal demands for climate studies. 

 This work provides a brief review of coupled 
model development and prediction for ENSO studies 
in China. The coupled models with diff erent 
complexities reviewed in the paper are limited 
primarily to those from four institutions only, which 
have been most active in ENSO modeling in China, 
with progress being made continually and steadily in 
history. Indeed, there are other coupled models 
relevant to ENSO studies in China and thus the current 
review is incomplete. That is to say, our selections of 
models for the review are rather objective, but as 
described above, these reviewed models are most 
representative of ENSO coupled modeling studies in 
China because they typically exhibit some unique 
characteristics and obvious advantages in terms of 
model dynamical formulations or process 
representations. Note that this short review has several 
weaknesses that need to be taken care. For example, it 
is necessary to compare the strengths and weaknesses 

of ENSO modeling studies in China to those of 
international studies so that useful information can be 
provided about what is the current level of ENSO 
studies in China. Here, we just show the performances 
of the objectively selected models in diff erent aspects. 
It is highly desirable to provide a synthetic view of 
biases and uncertainties of the reviewed models in 
specifi c aspects of ENSO properties, including the 
amplitude and periodicity, the seasonal phase locking, 
asymmetry and irregularity, spatial-temporal 
evolution and prediction skill. In doing so, common 
measures with the same criterion and metrics should 
be applied to all the models reviewed in order to 
quantify the model performances in a coherent and 
uniform way. In other words, a parallel analysis 
should be performed to provide information about 
some important intermodal diff erences in ENSO 
simulations and predictions. Fortunately, recently 
released CMIP6 products have been available, which 
can be systematically compared with each other for 
such purposes. Some related detailed analyses and 
modeling experiments are underway and the results 
will be presented elsewhere (e.g., Zhu et al., 2020).   
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