
Contents lists available at ScienceDirect

Atmospheric Research

journal homepage: www.elsevier.com/locate/atmosres

A radar reflectivity data assimilation method based on background-
dependent hydrometeor retrieval: An observing system simulation
experiment
Haiqin Chena, Yaodeng Chena,⁎, Jidong Gaob, Tao Suna, Jacob T. Carlinc

a Key Laboratory of Meteorological Disaster of Ministry of Education (KLME), Joint International Research Laboratory of Climate and Environment Change (ILCEC),
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China
b NOAA/National Severe Storms Laboratory, Norman, OK, United States of America
c Cooperative Institute for Mesoscale Meteorological Studies, NOAA/OAR National Severe Storms Laboratory, University of Oklahoma, Norman, OK, United States of
America

A R T I C L E I N F O

Keywords:
Data assimilation
Radar reflectivity
Hydrometeor retrieval
Convective-scale numerical weather prediction

A B S T R A C T

Radar reflectivity contains information about hydrometeors and plays an important role in the initialization of
convective-scale numerical weather prediction (NWP). In this study, a new background-dependent hydrometeor
retrieval method is proposed and retrieved hydrometeors are assimilated into the Weather Research and
Forecasting model (WRF), with the aim of improving short-term severe weather forecasts. Compared to tradi-
tional approaches that are mostly empirical and static, the retrieval parameters for hydrometeor identification
and reflectivity partitioning in the new scheme are extracted in real-time based on the background hydrometeor
fields and observed radar reflectivity. It was found that the contributions of hydrometeors to reflectivity change
a lot in different reflectivity ranges and heights, indicating that adaptive parameters are necessary for reflectivity
partitioning and hydrometeor retrieval. The accuracy of the background-dependent hydrometeor retrieval
method and its impact on the subsequent assimilation and forecast were examined through observing system
simulation experiments (OSSEs). Results show that by incorporating the background information, the retrieval
accuracy was greatly improved, especially in mixed-hydrometeor regions. The assimilation of retrieved hydro-
meteors helped improve both the hydrometeor analyses and forecasts. With an hourly update cycling config-
uration, more accurate hydrometeor information was properly transferred to other model variables, such as
temperature and humidity fields through the model integration, leading to an improvement of the short-term
(0−3 h) precipitation forecasts.

1. Introduction

Convective-scale data assimilation (DA) and forecasts are a primary
focus and challenge of research and operations due to the important
role of severe weather analyses and forecasts for saving life and prop-
erty. Compared to conventional observations, which are insufficient for
resolving convective-scale weather, radar data are particularly well-
suited as they can capture the occurrence, development and dissipation
of convection structures with abundant three-dimensional information
at a high temporal and spatial resolution. It has thus been recognized
that the optimal use of radar observations critically determines the
quality of short-term convective weather prediction (Lilly, 1990; Sun
et al., 2014).

Radar radial velocity seems to be natural fit for variational (Sun and

Crook, 1997; Gao et al., 2004) or Ensemble Kalman Filter (EnKF, Tong
and Xue, 2005) assimilation systems as it is relatively easily trans-
formed into model state variables, while reflectivity (Z) assimilation at
the convective scale remains a challenge. To assimilate radar re-
flectivity, the model state variables should be transformed to the ob-
served reflectivity properly so that a direct comparison between ob-
servations and background fields can be drawn. One paradigm is using
observation operators which convert the model variables to the ob-
served ones. Many efforts have been devoted to the construction of
observational operators for reflectivity (Xiao et al., 2007; Jung et al.,
2008; Gao and Stensrud, 2012; Wang and Liu, 2019) and their appli-
cation in both EnKF and variational methods has shown promising re-
sults. In EnKF methods, highly nonlinear operators can be implemented
(Putnam et al., 2019). However, in variational assimilation systems, the
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incremental approach is usually adopted, which requires linearized
observation forward operators. Sometimes the linearization of non-
linear observational operators under the variational DA framework will
result in significant errors (Wang et al., 2013). The other paradigm is to
retrieve the model variables directly from the radar reflectivity and
then assimilate these variables. A variety of studies focusing on the
assimilation of retrieved humidity found improved analyses and fore-
casts in convective regions (Lopez and Bauer, 2007; Caumont et al.,
2010; Wang et al., 2013; Lai et al., 2019). Radar reflectivity also con-
tains information about hydrometeors, such as rainwater, snow and
graupel, which play a vital role in the microphysical processes for NWP
(Bauer et al., 2011; Kerr et al., 2015). In order to make better use of the
hydrometeor information contained in the radar reflectivity, many
studies have utilized the hydrometeors retrieved from reflectivity for
analysis or providing initial conditions for convective-scale NWP
models (Sun and Crook, 1998; Wu et al., 2000; Hu et al., 2006; Yokota
et al., 2016; Carlin et al., 2016; Wang et al., 2018).

Some earlier studies only considered warm rain processes and re-
trieved the rainwater mixing ratio from reflectivity observations (Sun
and Crook, 1998; Wang et al., 2013). However, the inclusion of both
liquid and ice-phased particles in the analysis is important for con-
vective systems, especially deep moist convective storms (Gao and
Stensrud, 2012). Generally, the dominant hydrometeor type can be
determined based on the reflectivity and the background temperature
thresholds. For example, an empirical reflectivity threshold of 32 dBZ is
usually used to classify the graupel-dominant (≥ 32 dBZ) or snow-
dominant (<32 dBZ) regions above the freezing level (Lerach et al.,
2010; Pan et al., 2016). Besides reflectivity and temperature thresholds,
additional observations have been used to improve the identification of
hydrometeors types. Wang et al. (2018) discerned the graupel-domi-
nant regions by incorporating simulated flash extent densities (FED)
data from the Feng-Yun-4 geostationary satellite. Dual-polarization
radar observations have also been used to improve the accuracy of
hydrometeor classification (Zhang et al., 2019; Matsui et al., 2019).
Once the dominant species has been defined, the total reflectivity can
then be partitioned proportionally for multiple hydrometeor variables.
The mixing ratio (q) of each hydrometeor is then obtained according to
a Z-q formula (Carlin et al., 2016). For example, in the hydrometeor
retrieval method adopted in the indirect assimilation of reflectivity in
the current WRFDA, the proportion of snow and graupel is a fixed value

and the contribution of rainwater increases linearly from 0 to 1 between
−5 °C and 5 °C; trapezoidal weighting functions corresponding to the
ambient temperature profile were also utilized for graupel and snow
aggregates in some studies (Zrnić et al., 2001; Wang et al., 2018).

The parameter settings of Z and T thresholds to classify hydrometer
species in the above hydrometeor retrieval method are empirical, and
when multiple species coexist, the partitioning process is also based on
empirical rules. In actuality, the distribution characteristics of hydro-
meters varies in different regions and weather situations, so the fixed
thresholds and proportion are likely not applicable to all cases. These
empirical rules result in great uncertainty of the retrieved hydro-
meteors, which may limit their value for storm-scale NWP (Gao et al.,
2009). Therefore, how to determine the hydrometeor types and the
proportion of each species during the reflectivity retrieval under dif-
ferent weather conditions remains a problem worth exploring.

To overcome these problems, we propose a new method that aims to
improve the hydrometeor retrieval from radar reflectivity by making
the process adaptive. In the new scheme, the hydrometeors are re-
trieved according to their real-time contributions to reflectivity at dif-
ferent reflectivity intervals and heights from the model background
fields so that the retrieval parameters (i.e., composition and proportions
of the hydrometers) are adaptively adjusted with the evolution of
weather conditions. Then, the retrieved hydrometeors are assimilated
into the WRF model with the goal of improving the convective-scale
analyses and forecasts. For the data assimilation method, the 3DVar
method developed for the WRF model is chosen instead of more ad-
vanced methods like 4DVar, EnKF, or hybrid methods because fast and
efficient analysis is essential for convective-scale weather where ana-
lyses and forecasts need to be delivered quickly to the public. Finally,
the accuracy of the hydrometeor retrieval method and its impact on the
subsequent assimilation and forecast are examined through observing
system simulation experiments (OSSEs).

This paper is organized as follows. First, the 3DVar method, re-
flectivity formula, and the newly proposed “background-dependent”
hydrometeor retrieval method are presented in Section 2. Then, model
configurations and experimental design are given in Section 3. The
accuracy of the background-dependent hydrometeor retrieval method
and its performance on analysis and subsequent short-term forecasting
are discussed in Sections 4 and 5. Finally, conclusions and discussions
are given in Section 6.

2. Methods

2.1. 3DVar assimilation of radar observations

In this study, the three-dimensional variational (3DVar, Barker

Fig. 1. Domain size and radars used in the study. The range for each radar is
shown roughly by the blue circle. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Schematic diagram showing the assimilation and forecast cycles in the
OSSEs.
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et al., 2012) method is employed to assimilate radial velocities and
hydrometeors retrieved from radar reflectivity. The optimal analysis of
3DVar is obtained by iteratively minimizing the following cost function:
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where Jb and Jo are the background and observational terms, respec-
tively. The vector x is the analysis model state variables, xb is the
background state, yo is the observation field, H is the observation op-
erator, and B and R are the background error covariance and the ob-
servation error covariance matrices, respectively.

Observation yo includes the radial velocity and retrieved hydro-
meteors. For the indirect assimilation, reflectivity is converted to hy-
drometeor mixing ratios of rain, snow and graupel. These hydrometeors
are then assimilated through the 3DVar system, and the analysis field is
obtained through the minimization of the cost function, with the ac-
curacy of the data assimilation dependent on the joint action of the
background and observation error covariances.

2.2. Hydrometeor retrieval method for radar reflectivity

The equivalent reflectivity factor (Ze) is obtained by summing the
backscattering from particles in the atmosphere (Tong and Xue, 2005):

= + +Z Z q Z q Z q( ) ( ) ( ),e r s g (2)

where Z(qr), Z(qs) and Z(qg) are the reflectivity factors (here in units of
mm6 m−3) of rain, snow and graupel, respectively. Calculation of the
equivalent reflectivity factors contributed by each species can be sim-
plified to a Z-q relation, which is expressed most generally as

=Z q a q( ) ( ) ,x x x
1.75 (3)

where ρ is the air density, qx is the mixing ratio of hydrometeor species
x (e.g., “r” for rain, “s” for snow or “g” for graupel), ax is the coefficient
determined by the dielectric factor, density and intercept parameter of
hydrometeor x, and Rayleigh scattering is assumed to occur. As in
previous studies, ax is frequently treated as a constant, where ar is
3.63 × 109 (Smith et al., 1975), ag is 4.33 × 1010 (Gilmore et al.,
2004). However, the coefficient is considered to be temperature de-
pendent for snow: when the temperature is greater than 0 °C, the

Fig. 3. Composite radar reflectivity fields of the Truth Run in domain D02. The valid forecast time is shown above each panel. The black lines in (b) and (d) indicate
the locations of the vertical cross sections shown in Figs. 5 and 6. The small blue box in (b) indicates the hydrometeor calculation region in Fig. 9. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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coefficient for wet snow as is 4.26 × 10 (Gilmore et al., 2004), while for
dry snow, which occurs at temperature less than 0 °C, as is 9.80 × 108

(Gunn and Marshall, 1958).
In the hydrometeor retrieval algorithm, qx needs to be calculated

from a single measurement of Ze. One of the important issues is to de-
termine Cx, which is the ratio of each species' contribution to the total
reflectivity. The component of reflectivity for each hydrometeor can
then be partitioned by the following formula:

=Z q Z C( ) .x e x (4)

Finally, substituting Eq. (4) into Eq. (3), the mixing ratio of each
species can be obtained with

=q Z C
a

exp ln /1.75 / .x
e x

x (5)

As mentioned in the introduction, Cx in previous studies is generally
based on the reflectivity (Z) and temperature (T); for convenience, this
empirical Z and T based method is called HyRt-ZT. The HyRt-ZT
method in the current WRFDA is employed in this study as a reference.
In this scheme, the proportion of the snow and graupel is a fixed value
that measured by the ratio of coefficients for snow and graupel, and the
contribution of rainwater increases linearly from 0 to 1 between −5 °C
to 5 °C.

2.3. Background dependent retrieval method

In fact, a fixed Cx is not appropriate for all areas and weather
conditions. The composition of the hydrometeor field varies at different
heights with different reflectivity values under different weather con-
ditions. Therefore, we sought to build a hydrometeor retrieval method
whose parameters update adaptively with the region and weather
conditions in proportion to the contribution of each species from the
background field.

First, for each hydrometeor type, we calculate the average re-
flectivity in the background field at different altitudes (zi) and re-
flectivity intervals (refj) through

= ×Z a q( ) ,x z ref x z ref x z ref, , ,
1.75

i j i j i j (6)

where z ref,i j
and qx z ref,i j

are the average air density and hydrometeor
mixing ratios at grid points within the reflectivity interval (refj) at
height zi. In addition, the reflectivity intervals in this study areset as
follows: ref1 : < 15 dBZ; ref2 : 15~25 dBZ; ref3 : 25~35 dBZ;
ref4 : 35~45 dBZ; ref5 : ≥ 45 dBZ.

Then, Eq. (6) can be substituted into the following Eq. (7) to cal-
culate the Cx in the background field:

= + +C Z Z Z Z/( ).x z ref x z ref r z ref s z ref g z ref, , , , , , ,i j i j i j i j i j (7)

Fig. 4. The vertical profiles of each hydrometeor's contribution to the total reflectivity in different reflectivity ranges at 1500 UTC. (A)- (e) shows the distribution of
Cx with height in different reflectivity intervals, where ref1 : < 15 dBZ; ref2 : 15~25 dBZ; ref3 : 25~35 dBZ; ref4 : 35~45 dBZ; ref5 : ≥ 45 dBZ.
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where Zr, Zs and Zg are the contributions to equivalent reflectivity Ze by
rainwater, snow, and graupel, respectively. After obtaining Cx from Eq.
(7), the hydrometeor mixing ratios can be retrieved according to Eq.
(5). Considering the possibility that the background may completely
miss the convection, a minimum number of grid points at which the
reflectivity values are great than a threshold refj at height zi is set to
calculate Cx. In this study, when the number is above 10, Cx is calcu-
lated using Eq. (7), otherwise a default value calculated from a 1-month
forecast climatology is used.

In addition, this study imposes a limitation on the retrieval process:
only when there is strong convection at upper levels (i.e., reflectivity
>45 dBZ, T<−5 °C) can graupel appear below the melting layer. This
method is called the “HyRt-BG” method hereafter.

3. Experimental design

3.1. Model configuration

The Advanced Research Weather Research and Forecasting model
(ARW-WRF; Skamarock and Klemp, 2008) V3.9.1 and its assimilation
system WRFDA V3.9.1 are adopted in this study. The model is config-
ured with two nested-grid domains at 9-km (D01) and 3-km horizontal
grid spacings (D02) with 361 × 301 and 421 × 321 grid points, re-
spectively (Fig. 1). Each domain features 41 vertical eta levels with a
model top set at 50 hPa. The selected physical parameterization
schemes mimic the operational settings used at the Meteorological
Bureau of Shenzhen Municipality, China (Huang et al., 2018): the
Thompson microphysical parameterization scheme (Thompson et al.,
2008), Grell-Freitas cumulus parameterization scheme (Grell and

Freitas, 2014), the Yonsei University PBL physics scheme (Hong et al.,
2004), RRTMG longwave and shortwave radiation schemes (Iacono
et al., 2008), and the Unified Noah land surface scheme (Tewari et al.,
2004). The cumulus scheme is only activated on the coarser grid.

The National Meteorological Center (NMC) method (Parrish and
Derber, 1992) is adopted to estimate the background error covariance.
The statistical samples are the differences between 24 h and 12 h
forecasts valid at the same time during a 1-month period from 15 April
to 15 May 2016. The selected control variables in this study are east-
ward and northward velocity components (U, V), surface pressure (Ps),
temperature (T) and pseudo relative humidity (RHs, water vapor mixing
ratio divided by its saturated counterpart in the background field). U
and V are selected as the momentum control variables to better as-
similate radar radial velocity observations at convective scale (Sun
et al., 2016; Shen et al., 2019). The hydrometeor control variables used
in this study for reflectivity assimilation are rainwater, snow and
graupel mixing ratios (Wang et al., 2013).

3.2. Setup of OSSEs

3.2.1. Truth Run and simulated observations
The truth simulation (referred to as the Truth Run hereafter) is used

for generating simulated observations. In this study, a multi-cell storm
in south China from 1200 UTC to 2000 UTC on 7 May 2017 was se-
lected as the case of interest. Fig. 2 illustrates the schematic diagram of
the OSSEs. First, the Truth Run is defined. The Truth Run is initialized
at 0600 UTC, and the initial and lateral boundary conditions are pro-
vided by the 1° × 1° NCEP final analysis (FNL) data. After a 6-h spin-up
process, conventional observations from the Global Telecommunication

Fig. 5. Vertical cross-sections of the hydrometeor mixing ratio fields: qg (colour shading), qs (blue contours), qr (green contours) from (a), (e) Truth Run; (b), (f) Exp-
ZT; (c), (g) Exp-BG; (d), (h) Exp-BG-Err. Legend for the colour shadings for qg (g kg−1) is shown on the bottom. The contour intervals of qs (g kg−1) are 0.1, 0.2, 0.5,
1.0, 2.5. The contour intervals of qr (g kg−1) are 0.01, 0.1, 0.2, 0.5, 1.0. The locations of the vertical cross sections are denoted by the black lines in Fig. 3. (a–d) is
valid at 1500 UTC and (e–h) is valid at 1700 UTC. The dashed black line indicates where the temperature is 0 °C. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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System (GTS) are assimilated in D01 and conventional data as well as
radial velocity and reflectivity are assimilated in D02 beginning at 1200
UTC. An 8-h forecast is then launched. The first hour forecast (at 1300
UTC) was discarded because the model variables were spinning up
during this time period.

The forward operator for simulated radial velocity follows Xiao
et al. (2005) and the forward operator for simulated reflectivity is given
by Eqs. (2)–(3). The 3D wind field from the Truth Run is sampled by 7
pseudo-radars at 9 elevation angles (0.5°, 1.5°, 2.4°, 3.4°, 4.3°, 6.0°, 9.9°,
14.6° and 19.5°) corresponding to the operational WSR-88D scanning
strategy VCP21 to obtain synthetic radial velocity data every hour from
1300 UTC to 2000 UTC. In contrast, the calculation of radar reflectivity
is done on each model grid; no geometric transformation between radar
observation space and model space are considered. This choice results
in simulated observations as accurate as possible for evaluating of the
retrieval method, and avoids interpolation errors of reflectivity in-
troduced while converting between the model grid and the radar ob-
servation points.

3.2.2. Experiment design
First, the CTRL experiment was generated to provide the benchmark

for the data assimilation experiments. In CTRL, the initial fields of D02
at 0600 UTC were interpolated from D01, and no radar data was as-
similated. Then, three DA experiments, Exp-ZT, Exp-BG, and Exp-BG-
Err, were performed to demonstrate the effectiveness of the background
hydrometeor retrieval on short-term convective-scale weather forecasts

(Fig. 2). In each DA experiment, the simulated radial velocity and re-
flectivity observations were assimilated hourly and a 3-h forecast was
then conducted in each cycle. The background fields at 1300 UTC were
same as that of CTRL, while later they were provided by the 1-h forecast
from the previous cycle. In Exp-ZT, the WRFDA's default hydrometeor
retrieval scheme (Wang et al., 2013) was employed, while the new
proposed background-dependent hydrometeor retrieval scheme was
adopted in Exp-BG. The third DA experiment, Exp-BG-Err, was carried
out with a different microphysics scheme – the NSSL two-moment mi-
crophysics scheme (Mansell et al., 2010) – used in the WRF model
forecast. The purpose of this experiment was to test the sensitivity of
the background-dependent retrieval method to model errors. The re-
trievals, analyses and forecasts are then verified against the Truth Run
to assess the accuracy of the retrieval and examine the impact of the
retrieved hydrometeors on the analyses and forecasts.

4. Hydrometeor retrievals

4.1. Hydrometeor distribution in background field

In this section, the retrieved hydrometeor mixing ratios (i.e., qr, qg,
qs) from the two different retrieval methods were compared to those
from the Truth Run.

First, the evolution of the convection in the Truth Run is briefly
described (Fig. 3). At 1300 UTC, a series of convective cells formed in
the middle of the domain and two organized convective systems were

Fig. 6. The average bias (top) and root mean square error (RMSE; bottom) at different thresholds for the retrievals of (a, d) qr; (b, e) qs; (c, f) qg for Exp-ZT (blue solid
line), Exp-BG (red solid line) and Exp-BG-Err (red dashed line) relative to the Truth Run over the whole cycle. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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present in the northeast part of the domain. By 1500 UTC, the cells in
the middle of the domain intensified and became well organized, and
the convection in the north weakened and moved out of the domain. By
1700 UTC, the systems had moved eastward and took on a linear
structure. Finally, the systems gradually moved out of the Guangdong
(GD) province and began to weaken and dissipate at 2000 UTC, while a
strong convective system in the west was moving eastward.

In Exp-BG, the distributions of hydrometeors were first calculated
from the background field. They were separated by model level and
reflectivity interval in each analysis time, with the result at 1500 UTC
shown in Fig. 4. The overall characteristics below 35 dBZ (Fig. 4a–c) are
similar: the reflectivity below the 12th model level is mainly con-
tributed from rainwater and above the 15th level is from dry snow; the
contribution of wet snow near the melting layer increases gradually
with increasing reflectivity threshold. For reflectivity larger than 45

dBZ (Fig. 4e), graupel accounts for a very large proportion, while dry
snow accounts for less than 10% of the reflectivity. In the melting layer,
the proportion of wet snow is the largest when the reflectivity is above
15 dBZ (Fig. 4b–e). Since it is from the same convective system, the
distribution of Cx at other times is only slightly different (not shown).
These results show that the contribution of each species varies appre-
ciably in different reflectivity ranges and levels, indicating that a fixed
threshold shouldn't be used for partitioning different reflectivity ob-
servations across hydrometeors even in the same weather regime.

4.2. Comparison of the retrieval results

The hydrometeor retrievals in the Exp-ZT, Exp-BG, and Exp-BG-Err
at 1500 UTC and 1700 UTC were compared (Fig. 5). In Exp-ZT (Fig. 5b,
f), the distributions of the retrieved snow and graupel are not

Fig. 7. Analysis of (a–d) rain at about 2 km AGL, (e–h) snow and (i–l) graupel mixing ratio at about 6 km AGL. (a), (e), (i) is the analysis for Truth Run, (b), (f), (j) is
for Exp-ZT, (c), (g), (k) is for Exp-BG and (d), (h), (l) is for Exp-BG-Err. The analysis time is 1700 UTC.
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reasonable because of the fixed proportions of snow and graupel
adopted in HyRt-ZT scheme. In the area where a large quantity of snow
should exist, the contribution to reflectivity was overly allocated to
graupel, resulting in a great underestimation of snow in areas with high
reflectivity values and an overestimation of graupel in areas with low
reflectivity values. Great deviations of hydrometeors from Truth Run
near the melting layer can also be seen in Exp-ZT, indicating that the
fixed empirical rules cannot correctly partition the snow and graupel
contributions in simulated reflectivity observations. This can induce
large errors in the hydrometeor retrievals and their subsequent assim-
ilation. In Exp-BG (Fig. 5c, g), however, even though some deviations
can be seen in mixed-hydrometeor regions, the overall estimation of the
three species is much closer to the Truth Run (Fig. 5a, e). The im-
provement to the retrieval accuracy for the new scheme over the old
one illustrates the importance of correctly partitioning the reflectivity
for hydrometeor retrievals. However, the benefits of the new scheme
may be overestimated in this experiment since model errors are not
considered. Results from Exp-BG-Err show that the retrieval errors are
increased when adding model error, especially for graupel in upper
levels (Fig. 5d) and beneath the melting layer (Fig. 5h), but the re-
trievals are still much closer to the Truth Run than that Exp-ZT. This
demonstrates that the method can tolerate model errors to some degree.

To quantitatively evaluate the performance of the two methods, the
bias and root mean square error (RMSE) were computed for the re-
trieved qr, qs and qg from the HyRt-ZT, HyRt-BG, and HyRt-BG-Err re-
spectively. Here the bias simply refers to the difference between the
retrievals and the Truth. The bias and RMSE were computed at different
mass mixing ratio thresholds (0.1, 0.3, 0.6, 1.0, 2.0, 5.0 g kg−1) for the
entire domain (D02) averaged over the whole duration of the simula-
tion. For rainwater (Fig. 6a, d), the three experiments perform simi-
larly, although HyRt-BG and HyRt-BG-Err slightly underestimated the
rainwater when larger than 2 g kg−1 (about 10%). Snow is seriously
underestimated in Exp-ZT (Fig. 6b, e), and the negative bias increases
with the thresholds. The underestimation in Exp-ZT is more than 40%
for greater than 2 g kg−1 and its RMSE is relatively high. This can be
explained by the fixed proportion of reflectivity attributed to graupel in
areas with high reflectivity values, which also leads to an over-
estimation of graupel in areas with the low reflectivity values. For
graupel (Fig. 6c, f), besides the overestimation in areas with low re-
flectivity values, there is a similar underestimation in areas with large
reflectivity values for HyRt-ZT (>16%). The HyRt-BG has much smaller
errors for both snow and graupel, which benefits from the successfully
hydrometeor identification and reflectivity allocation. Considering
model errors in Exp-BG-Err, the results of BIAS and RMSE for rain and
snow become slightly worse than in Exp-BG (Fig. 6a, b, d, e), and for
graupel, the retrieval errors increase a lot (Fig. 6c, f). So although the
background hydrometeor retrieval method is slightly sensitive to model
errors, the results still show some advantages over HyRt-ZT.

5. Short-term forecasts with the data assimilation of hydrometeor
retrievals

5.1. Analysis and forecast of hydrometeors

To test the effects of the different hydrometeor retrieval methods on
the short-term forecast of the MCS, the hydrometeor retrievals related
to CTRL and three DA experiments HyRt-ZT, HyRt-BG and HyRt-BG-Err
were assimilated into the model in 1 h DA cycles, respectively, and 3 h
forecasts were launched every hour.

5.1.1. Hydrometeor diagnostics
Fig. 7 shows the analysis fields of rain mixing ratio at about 2 km

AGL and snow and graupel mixing ratios at about 6 km AGL at the time
of the last analysis (1700 UTC) for the Truth Run and the three DA
experiments. The differences for rain look very small because the re-
trieval processes are almost same in the three DA experiments
(Fig. 7a–d). For Exp-ZT (Fig. 7j), the proportion of graupel is over-
estimated when the reflectivity values are low; consequently, the snow
is greatly underestimated (Fig. 7f). In comparison, snow is only slightly
underestimated (Fig. 7g) while graupel looks reasonable (Fig. 7k) for
Exp-BG. So benefit of proper partitioning of reflectivity information
among different hydrometeors is clearly demonstrated in Exp-BG. Only
small differences in the hydrometeor fields between Exp-BG (Fig. 7c, g,
k) and Exp-BG-Err (Fig. 7c, g, k) can be distinguished, indicating that
the added model errors don't appreciably impact the hydrometeors
analysis at these levels. The vertical profiles of the analysis fields were
also evaluated, with the conclusion quite similar to that of the hor-
izontal analysis (not shown).

5.1.2. 0–1 h hydrometeor forecast
The hydrometeor fields in convection systems evolve rapidly and

have low predictability (Fabry and Sun, 2010), so we first examine the
impact of hydrometeor assimilation on the short-term forecast initiated
at 1500 UTC.

At 15 min into the forecast, the ranges of rainwater, snow and
graupel in both Exp-ZT and Exp-BG are closer to the Truth compared to
the CTRL, which means that the data assimilation plays a positive role
in the initial forecast (Fig. 8). But even if the vertical composite re-
flectivity for Exp-ZT and Exp-BG looks similar (not shown), the internal
structures of the hydrometeors are very different (Fig. 8g, h, i vs j, k, l).
The simulation of rainwater, snow and graupel in the Exp-BG is much
closer to the Truth Run. After 30 min into the forecast, the regions of
nonzero hydrometeor fields in Exp-ZT become smaller than at 15 min.
For the Exp-BG forecast, even though there is a slight deviation in po-
sition, the prediction of the convective cells overall is much better. At
60 min (Fig. 8f, i, l), all three types of hydrometeors in Exp-ZT have
dissipated more compared to the Truth Run, while Exp-BG performs the
best. Comparing Exp-BG-Err with Exp-BG, snow above the melting level
and rain below remain in good agreement, while less graupel and much
more supercooled water exist due to the model integration using the
NSSL two moment microphysics scheme.

Vertical cross sections of the temporal evolution of hydrometeors
during the first 60 min are presented in Fig. 9. In the Truth Run, the
content of all three types of hydrometeors gradually decreases with
forecast time (Fig. 9a–c) because the convective system slowly moves
out of the D02 domain. In general, the hydrometeor prediction in Exp-
BG is the closest to the Truth Run. For rainwater, the difference be-
tween Exp-ZT and Exp-BG is not significant at the analysis time.
However, a sharp increase in rainwater appears in Exp-ZT as soon as the
model integration starts (Fig. 9g), which may be caused by the rapid
melting and falling of graupel from upper levels (Fig. 9i). Snow is lar-
gely underestimated in Exp-ZT, and it is not until 30 min that the model
produces relatively weaker snow prediction. In Exp-BG, in contrast, the
benefit of the assimilation of retrieved snow is obvious in the first
30 min of the forecast (Fig. 9k). For graupel, Exp-BG has a more rea-
sonable estimation at the initial time and the forecast (Fig. 9l), but Exp-
ZT has an overestimation at the initial time and also overforecasts for
the first 30 min (Fig. 9i). By adding model errors in Exp-BG-Err, rain-
water and graupel weaken more quickly, while the evolution of snow is

Fig. 8. Vertical cross-sections of the hydrometeor mixing ratio fields: qg (colour shading), qs (blue contours), qr (green contours) from (a–c) Truth; (d–f) CTRL; (g–i)
Exp-ZT; (j–l) Exp-BG and (m–o) Exp-BG-Err. Legend for the colour shadings for qg (g kg−1) is shown on the bottom. The contour intervals of qs (g kg−1) are 0.1, 0.2,
0.5, 1.0, 2.5. The contour intervals of qr (g kg−1) are 0.01, 0.1, 0.2, 0.5, 1.0. The three columns represent the 15, 30 and 60 min forecasts initialized at 1500 UTC,
respectively. The locations of the vertical cross sections are shown in line AB in Fig. 3. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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still very reasonable. Even though the advantages of HyRt-BG are di-
minished, the evolution of each hydrometeor in Exp-BG-Err is still
closer to the Truth Run than that in Exp-ZT.

Despite the improvements in Exp-BG, the hydrometeors still dis-
sipate rapidly and decrease by nearly half at 60 min, indicating that
hydrometeors have a short duration without the updating or support of
the related thermal and dynamic fields. The rate of dissipation of the
hydrometeors is relatively slower in Exp-BG (see slope in Fig. 9j–l),
which may be due to the hydrometeor fields in Exp-BG being relatively
more balanced with other model variables because they are derived
from the background field.

5.2. Forecast of other variables and quantitative evaluation in the cycle

5.2.1. 0–3 h reflectivity forecast
Fig. 10 shows the simulated composite reflectivity fields from the

Truth Run, CTRL, Exp-ZT, Exp-BG, and Exp-BG-Err. These forecasts
start at 1500 UTC in the middle of the cycle. In the simulated truth
composite reflectivity fields (Fig. 10a–c), the MCSs are propagating
southeastward slowly. Two major convective systems can be seen in
Fig. 5a: one is in the center of the domain (labeled system A) and the
other is in the northeast (labeled system B). In the CTRL, the prediction
for system A is too weak, and system B is totally missed. In the DA
experiments, the region and intensity of both systems are substantially
improved compared to the Exp-CTRL. One hour into the forecast (1600
UTC), the reflectivity core (system A) in Exp-ZT is weaker and narrower
than Exp-BG, which may be caused by faster dissipation of the hydro-
meteors mentioned in Section 5.1.2. By the second hour of the forecast
(1700 UTC), the difference between Exp-ZT and Exp-BG is reduced, but
Exp-BG still has broader and greater nonzero reflectivity coverage in
system A, indicating that the convective systems in Exp-BG are more
organized. After 3 h, though better than CTRL, both Exp-ZT and Exp-BG
lose the strength of the convection due to the hydrometeor dissipation.
As we can see from Fig. 10m–o, adding model errors in Exp-BG-Err, the
improvements brought by the background dependent retrieval method
are still clear in 1 h forecast, but not obvious after that. This may be
because the differing microphysics scheme plays a significant role in the
forecast over time.

5.2.2. 0–3 h precipitation forecast
The quantitative precipitation forecast is an important indicator for

evaluating the benefit brought by assimilation, so the hourly pre-
cipitation for each experiment is further evaluated. Fig. 11 shows the
hourly accumulated precipitation of the last cycle for the Truth Run,
CTRL, Exp-ZT, Exp-BG, and Exp-BG-Err. The precipitation is not well
simulated by the CTRL (Fig. 11d–f), and the precipitation forecast is
greatly improved after the retrieved hydrometeors are assimilated in
Exp-ZT and Exp-BG experiments. During the first hour, both perform
similarly (Fig. 11g, j). During the second hour, the regions of heavy
rainfall (>15 mm/h) in both Exp-ZT and Exp-BG (Fig. 11h, k) agree
well with those in the Truth Run (Fig. 11b), and the Exp-BG performs
much better. In the last hour, although the rainfall in Exp-ZT is much
stronger than that of CTRL (Fig. 11f vs i), its intensity is still far less
than the Truth Run. The Exp-BG performs the best among all experi-
ments. For Exp-BG-Err, the rainfall is reasonable in the first hour
forecast, but is weaker at later time compared with both Exp-ZT and
Exp-BG due to mode errors.

To quantitatively evaluate the precipitation forecast of different
experiments, the Fractions Skill Scores (FSS, Roberts and Lean, 2008) at
different thresholds are calculated against the Truth Run for each ex-
periment. The FSS is more tolerant of small displacement errors and
more suitable for precipitation evaluation with fine resolution grids
(e.g., Fierro et al., 2015). In this study, the radius for FSS is about 15 km
(5 neighborhood grid cells), and the evaluating area covers where the
simulated reflectivity observations are greater than zero. The FSS of
hourly accumulated precipitation with different thresholds (2.5, 5, and
15 mm) for CTRL, Exp-ZT, Exp-BG, and Exp-BG-Err are presented in
Fig. 12. In general, the three DA experiments achieved higher FSS
compared to CTRL at all thresholds in each forecast period. The more
accurate analysis of the hydrometeor fields in Exp-BG resulted in the
highest FSS at almost all thresholds compared with Exp-ZT except in the
first hour. During the first hour, the overall FSS in Exp-BG-Err at 2.5 and
5 mm is marginally the highest among all the experiments, so the ne-
gative impact of model errors remains small for the first hour pre-
cipitation forecast. However, the model errors caused by a different
microphysics scheme does reduce the forecast scores for 1–2 and 2–3 h
forecasts. In general, Exp-BG performs better than Exp-ZT in most in-
stances.

5.2.3. RMSEs in the cycle
The average root-mean-square errors (RMSEs) of the CTRL, Exp-ZT,

Exp-BG and Exp-BG-Err against the Truth Run over the 5 cycles are
calculated for all three hydrometeor variables and water vapor
(Fig. 13). At the analysis time (t = 0), all three DA experiments have
smaller errors of rain and snow than CTRL (Fig. 13a, b), while Exp-ZT
has the largest errors for graupel because the reflectivity is wrongly
attributed to graupel (Fig. 13c). The benefits of assimilating reflectivity
decay rapidly in the first hour, and the differences in the hydrometeors
between the DA experiments and CTRL narrow over time. The errors for
snow in both Exp-BG and Exp-BG-Err (Fig. 13b) are the smallest over
almost the entire 3-h time. This indicates that the well retrieved snow
may last longer with the model integration. The assimilation of re-
trieved hydrometeors also helps improve the forecast of water vapor in
Exp-BG, but with model errors included, it has a negative impact on the
forecast of water vapor (Fig. 13d). Out of all three experiments, Exp-BG
has the smallest forecast errors for water vapor, which may be a result
of a more accurate analysis of hydrometeors in Exp-BG. The assimila-
tion of retrieved hydrometeors may contribute to the gradual adjust-
ment of other model fields like temperature, which leads to an im-
provement of the short-term precipitation forecast.

5.3. Diagnosis of temperature and moisture fields

In order to further identify the reason why the hydrometeor as-
similation can improve the prediction beyond 1 h, the temperature and
moisture fields from the model and their response to the hydrometeors
field are discussed below. To simplify the following discussion, Exp-BG-
Err is not discussed.

Fig. 14 presents the vertical cross sections of temperature difference
between each DA experiment and the Truth Run over the rainfall center
from 24.2°N to 24.8°N in the last cycle. For the analysis, the differences
in Exp-BG (Fig. 14d) are much smaller than those in Exp-ZT (Fig. 14a).
In the 10-min forecast, the temperature in the middle levels in Exp-ZT
becomes much colder than in Exp-BG, which may be because less

Fig. 9. Vertical cross sections of the temporal evolution of horizontally-averaged hydrometeor mixing ratios in the first 60 min over the convective center (units: g
kg−1) of (a–c) Truth Run; (d–f) CTRL; (g–i) Exp-ZT; (j–l) Exp-BG; and (m–o) Exp-BG-Err. The forecasts are initiated at 1500 UTC. The calculation region is denoted by
the blue box in Fig. 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Composite reflectivity forecasts initialized at 1500 UTC from (a–c) Truth; (d–f) CTRL; (g–i) Exp-ZT, (j–l) Exp-BG and (m–o) Exp-BG-Err. The three columns
represent the 1-h forecast, 2-h forecast and 3-h forecasts, respectively.
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deposition or riming resulting in less warming due to latent heat
compared to the Truth run. In the 3 h forecast, the temperature dif-
ferences of the two DA experiments narrows. But the Exp-BG still out-
performs Exp-ZT in term of prediction of the MCS (between 114°E and
116°E). This leads to a better accumulated precipitation forecast in Exp-
BG.

The relative humidity for the Truth Run, and the difference between
the two DA experiments and the Truth Run over the rainfall center from

24.2°N to 24.8°N in the last cycle are shown in Fig. 15. At the analysis
time, it is obvious that relative humidity in Exp-BG is closer to the truth
than that in Exp-ZT. After 10 min of model integration, the melting and
falling of graupel makes the upper-level air (around 500 hPa) drier and
the rapid increase of rain makes the lower-level air (around 850 hPa)
moister in the precipitation area (about 112°E ~ 114°E) in Exp-ZT,
while smaller differences can be seen in Exp-BG. After the 3-h in-
tegration, the Exp-ZT and Exp-BG perform similarly, but an important

Fig. 11. Hourly accumulated precipitation rates (mm) of the last cycle for (a–c) Truth, (d–f) CTRL, (g–i) Exp-ZT, and (j–l) Exp-BG, and (m–o) Exp-BG-Err. The three
columns represent the accumulated precipitation during the first hour, second hour and third hour's forecast, respectively. The red frame indicates the diagnosed
region in Figs. 14 and 15. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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improvement is that the moisture field between 850 hPa and 700 hPa
ahead of the MCS (about 114°E ~ 116°E) has been enhanced in Exp-BG.
Better humidity conditions in Exp-BG have a pronounced effect on the
rainfall process.

This section shows that the impact of a better hydrometeor analysis
on model forecast is primarily limited to the first hour. However, by
cycling the analyses, the temperature and humidity fields are gradually
influenced and the subsequent precipitation prediction is ultimately
improved.

6. Conclusions

In this study, a background-dependent hydrometeor retrieval
scheme was proposed to improve the accuracy of the hydrometer
classification, analysis, and forecast. The main idea is to adaptively
determine the contributions of the hydrometeors to the reflectivity
according to the background field. The hydrometeor retrieval method
was compared to the existing retrieval scheme in WRFDA through
OSSEs.

The proportions of each hydrometeor species were calculated from

Fig. 12. Averaged Fractions Skill Scores of the hourly-accumulated precipitation forecasts for thresholds of 2.5 mm, 5 mm and 15 mm for CTRL, Exp-ZT, Exp-BG and
Exp-BG-Err over the whole cycle. The radius of influence of the neighborhood method used in this study is about 15 km and the scoring area covers the entire
precipitation area in Fig. 11.

Fig. 13. Time series of the analysis and forecast RMSEs of (a) qr at 850 hPa, (b) qs at 400 hPa, (c) qg at 300 hPa and (d) qv at 700 hPa for the whole cycle.
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the background fields and the accuracy of the retrieved hydrometeors
from both schemes were first evaluated. It was found that the con-
tribution of each hydrometeor species to the reflectivity varies widely
in different reflectivity ranges and different vertical levels. This in-
dicates that fixed parameters should not be used for calculating the
contributions of each hydrometeor species to reflectivity even in the
same background weather regime. By incorporating the background
information, the retrieval reflectivity partitioning parameters became
adaptive and the hydrometeor retrieval accuracy was greatly improved
even when considering model error, especially in regions of mixed
species.

The retrieved hydrometeors from both retrieval methods were then
assimilated utilizing 3DVar with an hourly update cycling configura-
tion. A better analysis of snow and graupel were obtained when the new
retrieval method was used. Results show that both DA experiments
improved the forecast of hydrometeors in the first hour, but the hy-
drometeors declined rapidly with the model integration. However, the
additional data assimilation cycles helped the hydrometeors persist in
Exp-BG. The reason for these improvements may be that Exp-BG im-
plicitly included the model constraints, and thus the retrieved hydro-
meteor fields were relatively more balanced with other model variables.

The improvement of the hydrometeors' forecast in this study was
mainly concentrated within the first hour, but with the hourly update
cycling configuration, it further affected other variables like tempera-
ture and humidity through thermodynamic and microphysical

processes. The improvement of the temperature and humidity fields
was achieved, so that the assimilation of retrieved hydrometeors ulti-
mately improved the short-term forecast of reflectivity and precipita-
tion.

Though our proposed scheme shows promising results, problems
still exist. First, the improvement of hydrometeor fields has a relatively
short duration, which can be improved by considering multivariate
correlation among hydrometeors and other analysis variables in the
static background error or introducing a flow-dependent background
error through a variational-ensemble hybrid method (Pan et al., 2018;
Meng et al., 2019). Second, due to the lack of real observations of
sufficiently high spatial and temporal resolution, the new scheme was
only evaluated through OSSEs. Although its value has been proved,
further testing is also needed using real data cases. Finally, dual-po-
larization radar data are an important additional source of information
for classification of hydrometeors beyond Z, so it is likely that better
retrievals and forecasts can be achieved with the assistance of polari-
metric information.
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Fig. 14. Cross sections of temperature fields (shaded; K) for (a–c) the difference between Exp-ZT and the Truth Run and (d–f) the difference between Exp-BG and the
Truth Run over the rainfall center from 24.2°N to 24.8°N. The rainfall center is denoted by the red frame in Fig. 11. (a, d) are the analyses valid at 1700 UTC. (b, e) are
the 10-min forecasts initiated at 1700UTC. (c, f) are the 3-h forecasts initiated at 1700 UTC. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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