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ABSTRACT
Recently, a kind of heuristic optimization algorithm named gravitational search algorithm (GSA) has been rapidly developed.
In GSA, there are two main parameters that control the search process, namely, the number of applied agents (Kbest) and the
gravity constant (G). To balance exploration and exploitation, a fuzzy system containing twelve fuzzy rules is proposed to intel-
ligently control the parameter setting of the GSA. The proposed method can enhance the convergence ability and yield better
optimization results. The performance of fuzzy GSA (FGSA) is examined by fifteen benchmark functions. Extensive experimen-
tal results are tested and compared with those of the original GSA, CGSA, CLPSO, NFGSA, PSGSA and EKRGSA.
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1. INTRODUCTION

As optimization problems have become increasingly complicated,
the traditional methods cannot effectively solve them in a high-
dimensional search space. Hence, heuristic search algorithms have
come into being. Heuristic optimization methods are developed
based on natural or physical processes. Algorithms inspired by the
behavior of natural phenomena have received widespread attention
over the past few decades [1–4].

The superior performance of gravitational search algorithm (GSA)
has attracted increasing attention. In recent years, many modified
versions of GSA have been proposed. The most famous are the real
GSA [5], introduced for real-valued variables; the binary GSA [6],
which has variables with a value of either 0 or 1; the discrete GSA
[7], possessing variables with discrete values; and the mixed GSA
[8], containing both continuous and binary variables.

To control exploitation and exploration efficiently, some new GSA
operators have been designed, including disruption [9–11], chaotic
[12,13], mutation [14], crossover [15], and so on.

In the original GSA, the parameters mainly consist of the following
aspects:mass of agent (M), number of agents (N), gravitational con-
stant (G), distance between agents in the search space (R), power
between distances (P) and number of applied agents (Kbest). The
number of agents is generally set at the beginning of the algorithm
and fixed during operation [16]. M has three attributes [5]: active
gravitational mass, which determines the intensity of the gravita-
tional field produced by an agent; passive gravitational mass, which
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determines the strength of an agent’s interaction with the gravita-
tional field and inertialmass, which represents the intensity of resis-
tance to motion change when a force acts on an agent. The value
of N is set according to the requirements of the specific algorithm
used. The distance between agents is calculated as a function of the
Euclidian distance, and the power between distances is set to one in
the GSA and all its variants.

The values of the masses in the original GSA, including the passive
mass, active mass and inertia mass, are set to the same value. Javidi
suggested that mass calculation should be improved by defining an
opportune function named sigma scaling and the Boltzmann func-
tions [17]. These functions try to balance exploration and exploita-
tion to prevent the algorithm from falling into local optimum.
Khajooei and Rashedi proposed a function related to the concept
of antigravity, which utilizes both positive and negative masses.
The algorithm aims to enhance the ability to explore the search
space [18].

In most GSA versions, both G and Kbest follow the same rules and
decrease as the number of iterations increases [19]. In the original
GSA, Kbest is obtained by the decreasing function in Eq. (1) [5]:

Kbest = 0.01 × N ×
(
final_per +

(
1 − t

T

)
×
(
100 − final_per

))
,

(1)

where N is the number of agents, final_per is a control parameter
allowing only one agent to apply a force to others, which denotes
the percentage of particles that exert gravitational force on all parti-
cles in the end, t is the number of iterations and T is the maximum
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number of iterations. S. He et al. proposed EKRGSA and modified
the function ofKbest, which decreases exponentially with the num-
ber of iterations from N to 1 in Eq. (2) [20]:

Kbest = N ×
(
final_per
100

) t
T , (2)

whereN is the number of agents, final_per is the percentage of par-
ticles that exert gravitational force on all particles in the end, t is the
number of iterations and T is the maximum number of iterations.

G is controlled by an exponential function in Eq. (3) [5]:

G (t) = G0 × e
−𝛼

t
T , (3)

whereG0 denotes the initial value, 𝛼 denotes the gravitational coef-
ficient and T is the maximum number of iterations.

TheNFGSA [21] proposed a neural network combinedwith a fuzzy
system to adjust the parameter 𝛼 and redefined the definition of
the parameter Kbest. The PSGSA [21] redefined the calculation of
the parameter 𝛼 combined with the plane output surface based on
NFGSA.

In the binary GSA, G is considered as a linear decreasing function
in Eq. (4). Rashedi et al. examined the effects of different values of
G and Kbest [6]. The results of their experiments have shown that
the optimal value ofG is different for different functions and thatG
is a parameter determined by the problem. Furthermore, the value
of Kbest was experimentally proven to change with time.

G (t) = G0 ×
(
1 − t

T

)
, (4)

whereG0 denotes the initial value,T denotes themaximumnumber
of iterations and t is the iteration counter.

ED = Rave − Rmin
Rmax − Rmin

(5)

CM = fave(t) − fave(t − 1)
fave(t)

(6)

Fatemeh and Esmat use a fuzzy rule for controlling GSA setting
[22]. In their opinion, the distance between agents (R) can be rewrit-
ten into a new parameter ED, calculated according to Eq. (5), which
detects the ability of algorithms in terms of diversity. In Eq. (5),Rave,
Rmax and Rmin are the average, maximum and minimum Euclidian
distances between agents, respectively. Then, a new parameter CM
(see Eq. (6)) is introduced tomeasure the progress of the algorithm,
where fave(t) is the average value of the agent finesses at iteration t.
The combination of ED and CM can be expressed by a fuzzy logic
controller to prevent the algorithm from falling into local optimum
and converging too early. During the operation of the algorithm, G
is increased by these fuzzy rules when the optimization progress of
the algorithm is stagnant. At the later stage of the algorithm, G is
decreased so that the exploitation capabilities of the algorithm can
be improved. This is consistent with the rules for strengthening the
exploration ability in the early stage and increasing the exploitation
capability in the later stage.

In another study [23], the authors deemed that the value of Kbest
should be increased to escape trapping local optima when the best

fitness is not improved after multiple iterations. For the parame-
ter G, the authors suggested that a simple exponential decreasing
function for all iterations is unreasonable when solving complicated
problems. Therefore, eight fuzzy rules are proposed to updateG and
Kbest.

According to the two parameter control methods based on fuzzy
theory mentioned above, the former uses two functions to con-
trol two input parameters, which represent the population diver-
sity and population progress respectively. However, although these
fuzzy rules of the former are used to control the parameter G, they
cannot be used to control the parameterKbest, which is also signifi-
cant in determining themotion of agents. Conversely, the latter uses
fuzzy rules to control G and Kbest, but they cannot use appropriate
functions such as Eqs. (5–6) to control the input parameters. The
goal of a fuzzy system is to produce output parameters through the
values of the corresponding input parameters, which should be cal-
culated in reasonable ways. These descriptive languages without
specific control functions for calculating the input parameters are
obviously insufficient. Based on this observation, a fuzzy system
including new control functions is introduced to control G and
Kbest. The aim is to balance exploration and exploitation, which can
improve the performance of GSA.

1. It is important to control exploitation and exploration in GSA.
A new fuzzy system is applied to intelligently control the
parameters of GSA, which includes twelve fuzzy rules. They are
adopted to increase the convergence rate and prevent the algo-
rithm from falling into local optimum.

2. New control functions are designed to calculate the value of
the input variables so that the agent diversity and optimization
progress of GSA can be well monitored.

3. Compared with the original GSA, CGSA, CLPSO, NFGSA,
PSGSA and EKRGSA, the proposed method has achieved bet-
ter results for fifteen well-known standard functions. Addi-
tional experiments have indicated that these fuzzy rules are
effective.

This paper consists of five sections. Introduction is firstly suggested
as Section 1. After that, GSA is reviewed in Section 2. In Section 3
fuzzy GSA is described in detail. Experimental results are presented
in Section 4. At last, conclusions are included in Section 5.

2. GRAVITATIONAL SEARCH ALGORITHM

In GSA, the objective function of an optimization problem is based
onmany variables. Each variable has an upper and a lower bound, as
shown in Eq. (7), represented by xld and xud, respectively. A search
field is set up using these boundaries.

xld ≤ xd ≤ xud, d = 1, 2, … ,m (7)

Let Xi(i = 1, 2, … , k) be the agents, and the position of the ith agent
can be presented in Eq. (8):

Xi =
(
x1i , ....., xmi

)
, i = 1, 2, … , k, (8)

where each value in Xi represents the position of the ith agent
in the search space. At the iteration t, the total forces applied
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to agent i from a set of heavier agents should be defined as
Eq. (9):

Fdi (t) =∑
j∈Kbest,j≠i

randjFdij

=∑
j∈Kbest,j≠i

randjG(t)
Maj(t)Mpi(t)
Rij(t) + 𝜀 (xdj (t) − xdi (t)),

(9)

whereMaj (t) is the active mass related to agent j,Mpi (t) is the pas-
sive mass related to agent i, G(t) is the gravitational constant at iter-
ation t, 𝜀 is a small value, Rij (t) is the Euclidian distance between
the two agents i and j and randj is a random variable in the interval
[0, 1]. Kbest is a function of time, which is initialized to k0 at the
beginning and decreases over time.

Then, the law of motion is used to calculate the acceleration of the
agents, as shown in Eq. (10):

adi (t) =
Fdi (t)
MIi(t)

, (10)

where adi (t) is the acceleration of the ith agent in the dth dimen-
sion at iteration t. MIi(t) is the inertia mass related to the ith agent
at iteration t. Afterward, the next velocity and its next position are
calculated using Eqs. (11–12):

vdi (t + 1) = randi × vdi (t) + adi (t) (11)

xdi (t + 1) = xdi (t) + vdi (t + 1) , (12)

where randi is a uniform randomvariable in the interval [0, 1], vdi (t)
is the velocity of the ith agent in the dth dimension at iteration t
and xdi (t) is the position of the ith agent in the dth dimension at
iteration t.

The gravitational constant G is a function of time t (see Eq. (13)),
which takes an initial value G0. It is reduced with the iterative time
t to control the search accuracy.

G(t) = G(G0, t) (13)

The masses of the agents are calculated by the fitness evaluation.
Supposing that the gravitational mass is numerically equal to the
inertia mass, the massMi (t) is computed by Eqs. (14–17):

Mi = MIi, i = 1, 2, … ,m

mi (t) =
fiti (t) − fmax (t)
fmin(t) − fmax (t)

(14)

Mi (t) =
mi (t)

∑k

j=1
mj (t)

(15)

fmin(t) = min fitj (t) j ∈ {1, … ,m} (16)

fmax (t) = max fitj (t) j ∈ {1, … ,m} , (17)

where MIi denotes the inertia mass of the ith agent, fiti (t) is the
fitness value of the ith agent at iteration t and fmin(t) and fmax (t)
represent the minimum and maximum fitness values at iteration t,

respectively (for a minimization problem). The better the function
value is, the larger the value of the mass will be. A heavier mass
represents amore efficient agent, which has a greater attractive force
and runs more slowly.

To control important parameters, the original GSA uses a mathe-
matical model, which includes linearity, an exponential character
or both. As the iteration proceeds, the exploration becomes weaker
and the exploitation becomes stronger. However, when faced with
complex engineering problems, such as big data analysis, the prob-
lem becomes nonlinear and complex. It is not enough to control the
algorithm process through amathematical model [23]. An effective
solution is to establish a balance between exploration and exploita-
tion through parameter control.

3. FUZZY GSA

Currently, many scholars combine heuristics methods with fuzzy
logic to improve algorithms [22,24–26]. They integrate algorithm
processes with the linguistic description to create a fuzzy system to
intelligently control parameters. In GSA, the larger the agent is, the
slower the convergence rate is and the better the diversity is; the
smaller the agent is, the easier it is for the agent to fall into the local
optimum.

In the original GSA, there are two important parameters, i.e., Kbest
and G, which are used to control the search process. Among them,
G can be dominated by the gravitational coefficient 𝛼.

3.1. Kbest and G

Kbest denotes the number of agents that effectively apply force on
other agents. The larger Kbest is, the more attractive it is between
agents. By changing Kbest, the performance of GSA can be guaran-
teed by controlling the balance between exploration and exploita-
tion. In the original GSA, all agents initially apply a force to each
other. As the iteration evolves, Kbest is gradually reduced by a lin-
ear function. Finally, only one maximum fitness value exists, and
only the heaviest agent applies a force to the other agents, which is
shown in Eq. (9). The main idea of the Kbest formula is that when
the iteration time reaches the later stage, only agents with a large
weight can exert force on other agents. When Kbest increases, there
is more attraction, more movement and a lower convergence rate.
On the other hand, when Kbest decreases, the attraction andmove-
ment decrease, whichmay result in premature convergence and eas-
ily falling into the local optimum.

The parameterG is directly related to the acceleration of the agents.
Its size has a great influence on the value of the acceleration, and
the acceleration affects the position of agents after the gravitational
force is applied. In the original GSA, G is gradually reduced by
a monotonic exponential function. G is determined by the grav-
itational coefficient 𝛼. When 𝛼 is larger, then G is smaller, the
acceleration of the agent is smaller, the positional change is less, the
exploration ability is weaker, and it is easy to fall into the local opti-
mum. On the other hand, when 𝛼 is smaller, then G is larger, the
acceleration of the agent is greater, the positional change is more
obvious, the exploration capability is stronger, and the convergence
rate is slower.
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3.2. Agent Diversity and Optimization
Progress

Agent diversity and optimization progress are the most effective
tools for monitoring the performance of the algorithm [22]. The
parameter SD is introduced to measure the agent diversity, which
is calculated by Eq. (18):

SD = fave (t) − fmin(t)
fmax (t) − fmin(t)

, (18)

where fave (t) represents the average fitness value obtained from
the tth iteration, fmin(t) and fmax (t) represent the minimum and
maximum fitness values in the tth iteration, respectively. When
SD is small, the fitness values are similar, indicating the following
situations:

1. The positions of the agents in the search space are not far apart.
In this case, the objective function has fallen into the local opti-
mum at similar locations in the search space.

2. The positions of the agents in the search space are far apart. In
this case, the objective function has at least 2 local optima at
different locations in the search space.

Both conditions indicate that the objective function is trapped in
the local optimum regardless of whether the locations of the agents
are similar or different, which implies that the diversity of the agents
is poor, and vice versa.

In addition to SD, the parameter ZM is considered for measuring
the optimization progress.ZM is calculated as Eq. (19) inminimiza-
tion problems:

ZM = fbest (t − 1) − fbest(t)
fbest_ave (t) − fbest (t)

, (19)

where t is the number of iterations, fbest(t) is the optimal fitness
value in the tth iteration, and fbest_ave (t) is the average optimal fitness
value of the previous t iterations. When ZM is small, the current
iterative optimal value is not very different from that of the previ-
ous iteration, which indicates that the optimization progress is not
good, and vice versa.

The smaller SD is, the worse the diversity of the agents is. The larger
SD is, the better the diversity of the agents is. The smaller ZM is, the
worse the optimization process is. The larger ZM is, the better the
algorithm optimization process is.

3.3. Membership Functions

A fuzzy inference system is composed of three input variables and
two output variables. SD, ZM and t are the input variables. t is the
current iteration. 𝛼 and Kbest are the output variables. Fuzzy the-
ory uses linguistic descriptions instead of mathematical language.
In this paper, five membership functions are proposed to describe
the input and output variables. The role of the membership func-
tions is to label t, 𝛼, andKbest as low,medium and high. SD and ZM
are converted to low and high labels. Themembership functions are
depicted in Figure 1. In most cases, the membership functions are
devised by experts. The range of SD is the interval [0, 0.6], the range
of ZM is the interval [0, 1], the range of t is the interval [0, 1000],

the range of 𝛼 is the interval [28, 30] and the range of Kbest is the
interval [2, 50].

3.4. Fuzzy Rules

Twelve fuzzy rules are extracted from the previous subsections with
three input and two output variables, as shown in Table 1. These
rules are proposed to intelligently control the search process ofGSA,
prevent the algorithm from falling into a local optimum and avoid
premature convergence. Each of the fuzzy rules is set up to enhance
the performance of the algorithm.

The first rule in Table 1 indicates that in the early stage of the
iterations, the optimization progress and the diversity are good.
At this time, when 𝛼 increases, G decreases; then, the gravitation
between agents decreases, and the motion becomes slower. When
Kbest decreases, the number of agents that exert a force is reduced,
and themovement decreases. Hence,𝛼 takes a large value andKbest
takes amedian value, which can enhance the local search ability and
convergence ability of the algorithm.

The second rule indicates that in the early stage of the iterations,
the optimization progress is good and the diversity is bad. This may
reveal that the algorithm is prematurely trapped; thus, 𝛼 and Kbest
should increase. Therefore, 𝛼 gives amedium value, andKbest gives
a high value. By the rule, the acceleration increases, and the move-
ment is faster. As a result, the convergence rate is lower.

The third rule is that at early iterations, the optimization progress
and the diversity are poor. This shows that the algorithm is trapped
in local optimum and suffers from premature convergence. At this
moment, by decreasing 𝛼 and increasing Kbest, the acceleration
and velocity are increased. Then, agents can escape from the local
optimum.

The fourth rule is that at early iterations, the optimization progress
is poor and the diversity is good. This scenario shows that the algo-
rithm converges slowly. It is necessary to increase 𝛼 and decrease
Kbest; hence, 𝛼 takes a high value and Kbest takes a medium value
to increase the convergence speed.

The seventh rule indicates that at medium iterations, the optimiza-
tion progress and the diversity are poor. Similar to the third rule,
the algorithm falls into local optimum, and premature convergence
occurs. 𝛼 gives a low value, and Kbest is taken as a high value in
the medium term. Then, the acceleration increases, the position
changes more quickly and escape from the local optimum occurs as
soon as possible.

Regarding the ninth rule, when the algorithm is at a later iteration,
the optimization progress and the diversity are good. In this case,
the exploitation capability should be enhanced. Therefore, 𝛼 gives
a high value, and Kbest takes a low value, which speeds up the con-
vergence.

The difference between the twelfth rule and the ninth rule is that
the optimization progress is low. Because the diversity is good, it
is necessary to strengthen the convergence ability, which requires a
high value of 𝛼 and a low value of Kbest.

In this paper, inputs are combined logically using theANDoperator
to obtain a crisp decision front, and the center-of-gravity method is
utilized for defuzzification.
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Figure 1 Membership functions.

Table 1 Fuzzy rules for controlling the parameter of 𝛼 and Kbest.

Rule SD T ZM 𝛼 Kbest

1 high low high high medium
2 low low high medium high
3 low low low low medium
4 high low low high medium
5 high medium high high medium
6 If low medium high Then medium high
7 low medium low low high
8 high medium low medium medium
9 high high high high low
10 low high high medium medium
11 low high low low medium
12 high high low high low

3.5. Pseudocode of FGSA

Pseudocode of FGSA
Input: N: the number of agents;

T: maximum number of iterations;
Rpower: power of the Euclidian distance between two agents
F_index: the index of the test function
Min_flag: type of problem (min_flag = 1, minimization or
min_flag = 0, maximization)

(1) Rnorm = 2 (norm in the Euclidian distance);
(2) Generate the initial position of the ith agent by randomly forming from
search space;

(3) for iteration = 1: T (the maximum iteration)
(4) Checks the search boundaries for agents;
(5) Evaluate the objective function values of agents;
(6) If min_flag = 1
(7) Select the minimum value in the calculation result;
(8) else
(9) Select the maximum value in the calculation result;
(10) end If
(11) Calculate the values of masses of each agent (M);
(12) Update gravitational coefficient (𝛼) and the number of effective

agents (Kbest) by twelve fuzzy rules;
(13) Calculate gravitational constant (G);
(14) Calculate acceleration and velocity;
(15) Update agents’ position;
(16) end for
Output: Fbest: the best result of the objective function values;

Lbest: the best solution (the location of Fbest in search space);
BestChart: the best function values over iterations.

4. EXPERIMENTS AND DISCUSSION

The performance of the proposed algorithm can be tested by fif-
teen standard benchmark functions [27], including some unimodal
and some multimodal criteria, which are presented in Table 2.
The proposed algorithm is tested for minimization and com-
pared with the original GSA, CGSA [13] and CLPSO [28]. The
CGSA (chaotic GSA) embeds chaotic maps into the gravitational
constant (G) and proposes an adaptive normalization method to
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Table 2 Test functions.

Test Functions Bounds

f1 (X) =∑n
i=1 x

2
i [−100, 100]n

f2 (X) =∑n
i=1

||xi|| +∏n
i=1

||xi|| [−10, 10]n

f3 (X) =∑n
i=1

(
∑i

j=1 xj
)2

[−100, 100]n

f4 (X) = max
i
{||xi|| , 1 ≤ i ≤ n} [−100, 100]n

f5 (X) =∑n−1
i=1 [100

(
xi+1 − x2i

)2
+

(
xi − 1

)2] [−30, 30]n

f6 (X) =∑n
i=1

(
[xi + 0.5]

)2 [−100, 100]n

f7 (X) =∑n
i=1 ix

4
i + random [0, 1] [−1.28, 1.28]n

f8 (X) =∑n
i=1−xi sin

(
√||xi||

)
[−500, 500]n

f9 (X) =∑n
i=1 [x

2
i − 10 cos

(
2𝜋xi

)
+ 10] [−5.12, 5.12]n

f10 (X) = −20 exp
⎛⎜⎜⎝−0.2√

∑n
i=1 x

2
i

n

⎞⎟⎟⎠− exp
( 1
n
∑n

i=1 cos
(
2𝜋xi

))
+ 20 + e [−32, 32]n

f11 (X) = 1
4000 ∑

n
i=1 x

2
i −∏n

i=1 cos

(
xi
√i

)
+ 1 [−600, 600]n

f12 (X) =
𝜋
n
{10 sin

(
𝜋y1

)
+∑n

i=1(yi − 1)2 [1 + 10 sin2
(
𝜋yi + 1

)
] +

(
yn − 1

)2}
+∑n

i=1 u(xi, 10, 100, 4)

yi = 1+ xi+1
4 [−50, 50]n

f13 (X) = 0.1 {sin2
(
3πx1

)
+∑n

i=1(xi − 1)2 [1 + sin2
(
3πxi + 1

)
] +

(
xn − 1

)2 [1 + sin2
(
2πxn

)
]}

+∑n
i=1 u(xi, 5, 100, 4)

[−50, 50]n

f14 (X) =
⎛⎜⎜⎜⎝

1
500 +∑25

j=1
1

j+∑2
i=1

(
xi − aij

)6
⎞⎟⎟⎟⎠
−1

[−65.53, 65.53]2

f15 (X) =∑11
i=1 [ai −

x1
(
b2i + bix2

)
b2i + bix3 + x4

]

2

[−5, 5]4

make the transition from the exploration stage to the exploita-
tion stage smoother, which are all used to balance exploration and
exploitation. The CLPSO (comprehensive learning particle swarm
optimizer) introduces a novel learning strategy and combines the
particles’ historical best information to update the particle veloc-
ity in PSO. In all algorithms, the number of agents is 50 (N =
50). The dimensions of the test function are set to 30, the maxi-
mum number of iterations is 1000 and G0 is set to 100. From f1 to
f13, the minimum value is 0, except for f8, which has a minimum
value of −418.9823 × n. The optimum locations for the functions of
Table 2 can be found in [0]n, except for f5, f12, and f13 in [1]n and f8.
in [420.96]n. For f14 and f15, the minimum values are 1 and 0.0003,
respectively. The optimum locations of f14 and f15 are (−32, 32) and
(0.1928, 0.1908, 0.1231, 0.1358), respectively.

The results are averaged over 25 runs. In all tables, the mean
represents the average of the 25 best fitness values, the median rep-
resents the median of the 25 best fitness values, and the variance
represents the variance of the 25 best fitness values, among which
the best results have been highlighted in bold.

The results are shown in Table 3 and Figure 2. Table 3 illustrates
that the FGSA provides a better mean, median and variance than
those of the original GSA in f1, f2, f3, f4, f5, f8, f10, f12, f13 and f14.
The results of the mean, median and variance in f6 indicate that the
FGSA is the same as the original GSA. At the same time, the results
of the original GSA are worse than those of the FGSA in f7, f9, f11
and f15.

For CGSA and CLPSO, the results of FGSA are better in most func-
tions. In particular, the mean, median and variance of f1, f2, f4,
f10, f12, and f13 are significantly better than those of the CGSA and
CLPSO. In f3, f9, f11, f14 and f15, FGSA is less effective than CGSA
and CLPSO; FGSA is worse than CGSA and better than CLPSO in
f5. In the result of f6, FGSA is the same as CGSA and better than
CLPSO. For f7 and f8, FGSA is better than CGSA and worse than
CLPSO. Further analysis of the results by a statistical method is
shown in later paragraphs.

The progress of GSA, CGSA and CLPSO for f1, f2, f4, f10, f12 and
f13 are plotted in Figure 2. It can be observed that the convergence
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Table 3 The best results of 15 benchmark function with GSA, CGSA and CLPSO.

Function FGSA GSA CGSA CLPSO

f1
Mean 6.74E−24 2.069E−17 1.620E−05 5.502E−02
Median 6.32E−24 1.978E−17 1.430E−5 4.516E−01
Variance 4.2E−48 2.847E−35 2.088E−11 7.247E−03

f2
Mean 3.55E−12 2.272E−08 2.014E−02 4.612E−02
Median 3.56E−12 2.244E−08 1.996E−02 4.382E−02
Variance 2.66E−25 1.687E−17 7.659E−06 8.210E−05

f3
Mean 1.05E+02 2.546E+02 1.534E−03 8.585E+01
Median 9.007E+01 2.286E+02 1.298E−02 8.726E+01
Variance 2.271E+03 6.670E+03 6.764E−07 1.639E+02

f4
Mean 1.26E−12 3.188E−09 4.267E−03 2.509E+01
Median 1.19E−12 3.213E−09 4.429E−03 2.519E+01
Variance 4.49E−26 3.655E−19 4.558E−07 3.369E+00

f5
Mean 2.66E+01 2.857E+01 2.508E+01 4.021E+02
Median 2.65E+01 2.610E+01 2.499E+01 3.997E+02
Variance 1.028E−01 1.576E+02 9.226E−02 7.377E+03

f6
Mean 0 0 0 4.721E−02
Median 0 0 0 4.497E−02
Variance 0 0 0 1.380E−04

f7
Mean 4.57E−02 1.798E-02 4.919E−02 3.123E−02
Median 4.412E−02 1.808E-02 4.762E−02 3.106E−02
Variance 1.82E−03 3.836E−05 7.182E−05 5.638E−05

f8
Mean −2.928E+03 −2.840E+03 −2.789E+03 −1.254E+04
Median −2.877E+03 −2.865E+03 −2.722E+03 −1.255E+04
Variance 2.130E+05 3.766E+05 9.139E+04 1.130E+03

f9
Mean 2.69E+01 1.496E+01 2.080E+01 1.001E+01
Median 2.587E+03 1.492E+01 2.139E+01 1.046E+01
Variance 2.799E+03 1.068E+01 1.054E+01 2.805E+00

f10
Mean 2.08E−12 3.732E−9 3.038E−03 1.581E−01
Median 2.15E−12 3.671E−09 3.059E−03 1.485E−01
Variance 1.39E−25 1.986E−19 3.014E−07 1.049E−03

f11
Mean 2.06E+01 3.777 0.022 0.152
Median 2.017E+01 3.433 0.013 0.145
Variance 2.29E+01 2.071 0.001 0.002

f12
Mean 4.32E−26 1.431E−19 1.126E−07 1.818E+01
Median 4.32E−26 1.484E−19 1.103E−07 1.828E+01
Variance 1.39E−52 1.804E−39 1.141E−15 9.706E−01

f13
Mean 6.53E−25 1.900E−18 1.940E−06 5.245E−02
Median 5.8E−25 1.747E−18 1.794E−06 4.956E−02
Variance 7.05E−50 2.006E−37 6.331E−13 5.622E−04

f14
Mean 3.506 3.656 2.530 0.998
Median 2.209 2.982 2.317 0.998
Variance 6.916 6.926 1.020 0

f15
Mean 2.11E−03 2.007E−03 1.889E−03 5.807E−04
Median 2.102E−03 1.991E−03 1.219E−03 5.857E−04
Variance 2.44E−07 4.99263E−07 2.59053E−06 5.45262E−09

GSA, gravitational search algorithm; FGSA, fuzzy GSA.

rate of FGSA is faster than that of the other algorithms and that the
mean of the iterative full period is the smallest. This fully demon-
strates that FGSA tends to look for the global optimum faster than
the other algorithms. Additionally, FGSA shows better convergence
ability than that of the others. Therefore, FGSA has excellent per-
formance and a high convergence rate.

The non-parametric statistical method Wilcoxon test was used
to make a compete comparison. Table 4 lists the results of the
Wilcoxon test on every test function between FGSA and the other
algorithms. Rows “+,” “=” and “−” denote the number of test func-
tions of the other algorithms that FGSA performs better than,
almost the same as, and worse than, respectively. Row “Score” indi-
cates the difference between the number of “1”s and “−1”s. It is used
to make an overall comparison between two algorithms.

For example, FGSA outperforms GSA on 8 functions (f1, f2, f3, f4,
f5, f10, f12, f13), performs the same as GSA on 4 functions (f6, f8, f14,
f15) and performs worse on 3 functions (f7, f9, f11). Therefore, the
score is 8 − 3 = 5, which indicates that FGSA is better than GSA.

4.1. Comparison with the Latest
GSA Variants

To further validate the performance of the proposed algorithm,
the three latest GSA variants, i.e., NFGSA [21], PSGSA [21] and
EKRGSA [20], are selected for comparison.

In all algorithms, the test functions are the same as in Table 2. The
number of agents is 50 (N = 50). The dimension of the test function
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Figure 2 Comparison of performance of f1, f2, f4, f10, f12 and f13.

is set to 30, the maximum number of iterations is 1000 andG0 is set
to 100 in FGSA, NFGSA and PSGSA and to 1000 in the EKRGSA.
The results are averaged over 25 runs. Note that the results of
NFGSA, PSGSA and EKRGSA are taken from their respective
reference papers. Because there are no experimental results on the
function f6 for the EKRGSA, the comparison with EKRGSA on f6
is omitted.

Table 5 illustrates that the mean of FGSA is the best for f1. The
results of the mean rank second compared to that of NFGSA,
PSGSA and EKRGSA on f3, f8, f14 and f15. For f5, FGSA pro-
vides better result than does PSGSA but worse than that of NFGSA
and EKRGSA. In general, the results of FGSA are better on most
functions.
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Table 4 The Wilcoxon test of the best results for 15 benchmark function.

Function FGSA GSA CGSA CLPSO

Wilcoxon Wilcoxon Wilcoxon

f1 + + +
f2 + + +
f3 + − =
f4 + + +
f5 + − =
f6 = = +
f7 − = −
f8 = = −
f9 − − −
f10 + + +
f11 − − −
f12 + + +
f13 + + +
f14 = = −
f15 = − −
+ 8 6 7
= 4 4 2
− 3 5 6
Score 5 1 1

GSA, gravitational search algorithm; FGSA, fuzzy GSA.

Table 5 The best results of 15 benchmark function with NFGSA, PSGSA
and EKRGSA.

Function FGSA NFGSA PSGSA EKRGSA

f1 Mean 6.74E−24 7.51E−23 1.04E−02 3.68E−19
f2 Mean 3.55E−12 7.69E−09 3.77E−02 3.74E−09
f3 Mean 1.05E+02 9.13E +01 2.72E+02 2.46E+03
f4 Mean 1.26E−12 3.42E−08 1.67E−02 2.16E−08
f5 Mean 2.66E+01 2.50E+01 5.53E+01 2.457E+01
f6 Mean 0 0= 3.33E−02 −
f7 Mean 4.57E−02 5.06E−02 1.05E−01 6E−02
f8 Mean −2.928E+03 −2.68E+03 −3.39E+03 −
f9 Mean 2.69E+01 2.33E+01 2.13E+01 −
f10 Mean 2.08E−12 5.16E−12 1.48E−02 3.61E−10
f11 Mean 2.06E+01 1.50E+00 1.01E+01 −
f12 Mean 4.32E−26 2.07E−02 1.17E−02 1.91E−21
f13 Mean 6.53E−25 1.10E−03 1.30E−01 3.13E−20
f14 Mean 3.506 4.32 5.93 1.02
f15 Mean 2.11E−03 2.78E−03 4.52E−03 9.05E−04

4.2. Discussion

To set the parameters of GSA more reasonably, a fuzzy system with
twelve fuzzy rules is introduced. However, the setting of the three
input parameters needs to confirm the rationality. Thus, an exper-
iment is designed to test the performance of three different com-
binations of input parameters: SD + t, ZM + t, and SD + ZM + t.
Three groups are tested independently. The contrast is tested for
minimization, and the results are averaged over 25 runs. The exper-
imental results are shown in Table 6.

The average of the 25 best fitness values is chosen as the standard
for testing the pros and cons. The combination of SD, ZM and t
provides smaller results than those of the others on f1, f2, f3, f4, f5, f8,
f10, f12, f13, f14 and f15. The results of the threemethods for the input
parameters are the same as for f6. The results of the combination of
SD, ZM and t are worse than the others for f7 and f11. For f9, the
combination of SD,ZM and t ismore efficient than the combination

Table 6 Mean of three ways of input parameters.

Function SD + t ZM + t SD + ZM + t

f1 2.91E−21 1.43E−23 6.74E−24
f2 6.99E−11 1.60E−11 3.55E−12
f3 1.83E+02 1.93E+02 1.05E+02
f4 2.73E−11 1.67E−12 1.26E−12
f5 2.68E+01 2.88E+01 2.66E+01
f6 0 0 0
f7 3.98E−02 1.96E−02 4.57E−02
f8 −2.84E+03 −2.73E+03 −2.93E+03
f9 2.95E+01 1.91E+01 2.69E+01
f10 3.80E−11 2.77E−12 2.08E−12
f11 1.60E+01 1.15E+01 2.06E+01
f12 1.69E−23 8.48E−26 4.32E−26
f13 2.27E−22 1.34E−24 6.53E−25
f14 5.17E+00 3.91E+00 3.82E+00
f15 3.27E−03 3.27E−03 2.11E−03

of SD and t and less efficient than the combination of ZM and t. In
general, the combination of SD, ZM and t is better than the others
on most functions, which represents its excellent performance and
effectiveness.

The inference mechanism behind these fuzzy rules in Table 1 is
herein explained. The process of controlling parameters by the cor-
responding fuzzy rules for f3 is selected to describe the inference
mechanism. The results are represented in Table 7, which includes
the early, median and late iterations separately. For the parameters
of Table 7, the inputs are t (representing the current iteration), SD
(measuring the agent diversity) and ZM (weighing the optimiza-
tion progress), and the outputs are Kbest, 𝛼 and the correspond-
ing rule of the tth iteration. For example, when t is 199, SD is 0.47
and ZM is 0.746, it is revealed that at early iterations, SD and ZM
are described as high, which is verified by the member functions
in Figure 1. The agent diversity measured by SD and the optimiza-
tion progress weighed by ZM are good, which corresponds to rule
1 in Table 1. As a result, the value of Kbest is 25, which is consis-
tent with taking amedian value, and the value of 𝛼 is 29.49, meeting
the requirements of taking a large value. The other iteration stages
all have corresponding rules, which are shown in Table 7. Through
the above inference mechanism, the algorithm can escape from the
local optimum and enhance the rate of convergence.

Due to the addition of a fuzzy system, the computational cost may
be slightly worse. Nowadays, the performance of computer increas-
ingly becomes improved. The gap of response time between FGSA
and GSA is within seconds. However, we admit that our proposed
algorithm has increased some computational cost. This is the limi-
tation of the paper.

5. CONCLUSIONS

The idea of intelligently controlling the parameters of GSA is intro-
duced, and a fuzzy system is designed for this purpose. In this arti-
cle, an improved idea of controlling the important parameters of
GSA is proposed, which shows that a fuzzy inference system con-
taining 12 fuzzy rules can be used to control the parameters Kbest
and G.

The new strategy gives GSA a higher convergence rate and the abil-
ity to escape the local minimum. A balance between exploration
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Table 7 Control parameters by corresponding fuzzy rules for f3.

Inputs
t 199 200 201 499 500 501 799 800 801
SD 0.470 0.580 0.294 0.394 0.228 0.433 0.458 0.430 0.452
ZM 0.746 0.903 0.276 0.656 0.367 0.603 0.405 0.177 0.377

Outputs Kbest 25 25 25 31 40 25 11 11 11
𝛼 29.49 29.47 28.36 28.76 28.31 29.28 29.50 29.49 29.50

Corresponding rule 1 1 3 6 7 5 12 12 12

and exploitation is also realized. The performance of FGSA is exam-
ined on fifteen well-known standard functions. The experimen-
tal results are compared with those of the original GSA, CGSA,
CLPSO, NFGSA, PSGSA and EKRGSA. The results indicate that
FGSA achieves superior performances on most functions.
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