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a b s t r a c t

Disasters have caused significant losses to humans in the past decades. It is essential to learn about the
disaster situation so that rescue works can be conducted as soon as possible. Unmanned aerial vehicle
(UAV) is a very useful and effective tool to improve the capacity of disaster situational awareness for
responders. In the paper, UAV path planning is modelled as the optimization problem, in which fitness
functions include travelling distance and risk of UAV, three constraints involve the height of UAV,
angle of UAV, and limited UAV slope. An adaptive selection mutation constrained differential evolution
algorithm is put forward to solve the problem. In the proposed algorithm, individuals are selected
depending on their fitness values and constraint violations. The better the individual is, the higher the
chosen probability it has. These selected individuals are used to make mutation, and the algorithm
searches around the best individual among the selected individuals. The well-designed mechanism
improves the exploitation and maintains the exploration. The experimental results have indicated that
the proposed algorithm is competitive compared with the state-of-art algorithms, which makes it more
suitable in the disaster scenario.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In the past decades, various natural disasters have happened
and caused considerable damages to humans. Earthquake,
tsunami, hurricane, and extreme temperature have resulted in
lots of losses, such as Indonesia was hit by Tsunami on December
26, 2004, the Hurricane Katrina happened in the U.S. Gulf Coast
on August 29, 2005, Wenchuan earthquake occurred in 2008 [1,2].
It is vital to enhance the ability of disaster prediction, evaluation,
and response. When a disaster happens, the most critical issue is
to preserving lives. In the disaster context, it is known that the
first 72 h are very significant. Research and rescue work should be
conducted as quickly as possible. The main problem for disaster
responders is to lack disaster situational awareness and commu-
nication during the disaster. Nowadays, one of the most effective
approaches is the unmanned aerial vehicle (UAV). UAVs have
various advantages, such as low cost, better robust and can carry
out complicated tasks. Using UAVs, disaster responders can better
understand which infrastructures are damaged and the number
of people affected by the disaster [2–5]. UAVs can improve the
ability of disaster prediction, assessment, and response. Among
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these applications, UAV path planning is very important, which
has been investigated worldwide.

There are many challenges along a path, such as mountains
and bad weather. Path planning is a rather tough optimization
problem that seeks an optimal route while satisfying various
constraints. The UAV path problem is defined as the sum of flight
length, safety, altitude and three penalties, which are the climb-
ing/gliding slope, the turning angle and the terrain constraint
[6]. The length, height, and smoothness of the planning path
are modelled, in which constraints mainly derive from obstacles
and the ground [7]. To determine the optimal configuration of
the longitudinal elements of each UAV at the lowest cost, D.
Zhang & Duan considered the threat sources and coordination
constraints of UAVs [8]. The UAV path planning was formulated as
a weighted anisotropic shortest path problem to seek an optimal
path in the presence of moving obstacles and constraints [9]. The
four types of constraints considered in the UAV path planning
problem are: the maximum bending angle, the minimum route
segment length, the minimum flight altitude and the maximum
ascent/diving angle [10]. The core of path planning is to find a
path that can meet all constraints, including pitch angle, yaw
angle, minimum track length, turning radius, height, and voyage
[11]. Designers must consider the relationship between threat
exposure and fuel consumption of the UAV [12]. The UAV path

https://doi.org/10.1016/j.knosys.2020.106209
0950-7051/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.knosys.2020.106209
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2020.106209&domain=pdf
http://www.youdao.com/w/tsunami/#keyfrom=E2Ctranslation
mailto:yuxb111@163.com
https://doi.org/10.1016/j.knosys.2020.106209


2 X. Yu, C. Li and J. Zhou / Knowledge-Based Systems 204 (2020) 106209

optimization problem minimizes the set of four terms: the non-
feasible curves, length of the curve, flight paths, and curves with
a prescribed minimum curvature radius [13]. The objective pro-
gramme of UAV formation path planning can be defined as the
sum of the terrain cost, collision cost, minimal flight path length
cost and radar detection cost among UAVs, in which the con-
straints are incorporated into the objective function [14]. The four
constraints of safe distance between multiple UAVs, maximum
communication distance between UAVs, collision avoidance with
obstacles, and sensor coverage on target are considered in UAV
path planning [15]. Total distance, total delivery time, number of
used drones, and maximum speed are considered to form a UAV
planning model [16]. In order to guarantee the safety of flight,
the hard constraints that must be met and the soft constraints
to be optimized are raised separately as two criteria [17]. Path
planning is a constrained optimization problem that represents
two main aspects of path planning problems: UAV navigation
and SAR imaging [18]. Mathematically, UAV path planning can
be modelled as a constraint satisfaction problem. A fitness func-
tion is used to ensure that all constraints are fulfilled, thereby
minimizing the optimization criteria for the problem [19]. When
the UAV visits all targets and returns to the base in a continu-
ous terrain monitored by radar, objectives including minimum
total distance and radar detection threat are considered [20]. The
UAV path planning cost function is expressed as the weighted
sum of the fuel cost, threat cost and deviation cost [21]. In the
performance evaluation of a UAV flight path, fuel cost and threat
cost are commonly used indicators [22]. The grey wolf optimizer
(GWO) and symbiotic organisms search (SOS) are combined to
solve the problem, whose fitness functions are the fuel cost and
the threat cost. The GWO improves the convergence rate and
the SOS enhances the exploitation capacity [21]. A reinforcement
learning method based on GWO is implemented to solve the path
planning problem, in which four operations are introduced. The
experimental results have revealed that the algorithm can find a
good route in a complicated environment. These well-designed
mechanisms allow algorithms to achieve good performance [22].

The UAV applications described above are mainly focused on
the military field. The UAV path planning problem for disaster
management is rarely discussed. However, disasters occur more
frequently, resulting in widespread damage. Therefore, it is nec-
essary to study the problem in the disaster scenario because UAVs
play an influential role in disaster information collection, analysis,
forecasting, and so on.

The most crucial issue for UAV path planning is achieving
the optimal solution with minimal comprehensive costs. Previous
studies use the A* algorithm, dynamic programming, and geomet-
ric algorithms to solve the problem [23]. However, these methods
are time-consuming and suffer from relatively slow speed and
execution [24]. In recent years, bio-inspired intelligence models
have been increasingly used to solve the problem. Computational
intelligence can effectively overcome these defects, which can
be used in UAV path planning. Various research has focused on
computational intelligence to solve the problem, in which the
genetic algorithm (GA), particle swarm optimization (PSO), GWO
algorithm and ant colony optimization (ACO) are widely used
[21,22,24]. Every algorithm has its own features. Population ex-
tremal optimization (PEO) has attracted increasing attention. PEO
changes bad individuals in the population, which distinguishes
it from conventional evolutionary algorithms (EAs). It is also a
very promising optimization algorithm as many researches have
indicated that PEO can achieve superior performances in the
optimization field [25,26]. It is also a good candidate for the
optimization problem of UAV. Compared with PSO and GA, differ-
ential evolution (DE) algorithm is simple and easy to implement.
It also provides various mutation operators, which distinguish it
from other EAs.

UAV path planning is a constrained optimization problem.
The penalty method and constraint domination are two main
approaches to work with constraints [27]. Some adopt the penalty
method [10,20], which introduces a penalty function into the
original objective function to penalize infeasible solutions [28,29].
The constraints, such as the climbing/gliding slope, the turning
angle and the terrain constraint, are considered as a part of ob-
jective functions [10]. Constraint domination is used to compare
the feasible solution and infeasible solution, as proposed by Deb
[30]. The main idea of constraint domination is that feasible solu-
tions are better than infeasible solutions, and infeasible solutions
with low constraint violations are greater than those with high
violations.

Both methods make infeasible solutions less likely to be se-
lected in the EAs selection stage. In EAs, mutation, crossover,
and selection operators are often involved, in which mutation
is used to realize global search and crossover is used for lo-
cal search. When the constrained problem becomes increasingly
complicated, the feasible space becomes narrower. In biology,
some individuals have high fitness values, while others have low
fitness values. High-fitness individuals have a high probability
of producing offspring. The better the individual, the greater
chance it has to generate offspring. Feasible solutions have higher
probabilities to be selected to produce offspring than infeasible
solutions. The offspring produced are more likely to be feasible
solutions. The simulated binary crossover (SBX) and arithmetic
crossover are often applied to produce offspring near their par-
ents in the decision space. Most objective values of these offspring
will be in the vicinity of their parents in the objective space [31].

The above observation provides our motivation. An adaptive
selection mutation operator is designed to give individuals with
good fitness values higher probabilities to be selected. All individ-
uals are ranked in order of the fitness values of feasible solutions
and constraint violations of infeasible solutions. The algorithm
searches for the best individual from the selected individuals.
The novel mutation operator can enhance local search capabilities
while maintaining the diversity of the population. The proposed
algorithm is applied to solve the UAV path planning problem.

Based on the above analysis, the main contributions of the
paper can be summarized as follows:

(1) The UAV path planning is formulated as a constrained
optimization problem in the disaster scenario.

(2) An adaptive selection mutation constraint differential evo-
lution (CDE) algorithm is proposed.

(3) The UAV path planning problem is solved by CDE. Numeri-
cal simulations have illustrated that CDE is competitive compared
with the state-of-art algorithms.

The rest of the paper is organized as follows. Section 2 illus-
trates the UAV path planning model. CDE is proposed in Section 3.
In Section 4, how to solve the path planning problem based
on CDE is introduced. In Section 5, numerical simulations are
provided, and conclusions are made in Section 6.

2. UAV path planning model

2.1. Constrained optimization problem (COP)

UAV path planning is the COP. In real applications, many
problems involve constraints. Generally, the formulation of the
problem can be described as follows:

min f (x) (1)

s.t.

⎧⎨⎩
gj (x) ≤ 0, j = 1, 2, . . . , l
hj (x) = 0, j = l + 1, . . . , p
Li ≤ xi ≤ Ui, i = 1, 2, . . . ,D

(2)
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where x = {x1, x2, . . . , xD} is the decision variable, f is the
decision function, gj(x) is the inequality constraint, hj (x) is the
equality constraint, Ui and Li is the upper and lower boundary of
xi, p is the number of constraints, and D is the dimension of the
problem.

If a solution x satisfies the gj(x) and hj (x) simultaneously, it
is regarded as a feasible solution. Otherwise, it is the infeasible
solution. For feasible solutions, the constraint violation (cv) is
zero. On the opposite, the cv of the infeasible solution is more
than zero. The cv of infeasible solution is calculated as follows:

cvj = max
(
0, gj (x)

)
, j = 1, 2, . . . , l (3)

cvj = max (0,
⏐⏐hj (x)

⏐⏐), j = l + 1, . . . , p (4)

where cvj is the jth constraint violation.

2.2. Path representation

Path parameterization technology is often adopted to describe
the path because it can depict paths well through different pa-
rameters. There are two methods to represent the path [8]. The
first is the rotated coordinated frame, which can reduce the
dimensions of the problem. However, it cannot guide UAVs ef-
fectively to fly through obstacles as it is only along the rotated
X-axis. Therefore, its path representation ability is limited. The
second is the B-Spline. As it is flexible and can maps UAV paths
with arbitrary and smooth shapes, it is widely adopted in path
representation [13,18]. Moreover, the approach can be imple-
mented by a few parameters, which can save computational time.
It is essential in disaster scenarios. The B-Spline is introduced as
follows:

Assume n + 2 control points with coordinates (xc0, yc0, zc0),
. . . , (xck, yck, zck), . . . , (xcn+1, ycn+1, zcn+1). These control points
can formulate the B-Spline. The discrete serial point with coor-
dinates (xpt , ypt , zpt ) can be generated as:⎧⎪⎪⎨⎪⎪⎩
xpt =

∑n+1
j=0 xcj · Bj,k(t)

ypt =
∑n+1

j=0 ycj · Bj,k(t)

zpt =
∑n+1

j=0 zcj · Bj,k(t)

(5)

Where Bj,k (t) is the blending function of the curve, k is the
sequence of the curve, which is related to the curve’s smoothness.
The blending functions are defined recursively in terms of a set
of Knot values and are expressed as:

Bj,1 (t) =

⎧⎨⎩
1 if Knot (j) ≤ t ≤ Knot (j + 1)
1 if Knot (j) ≤ t < Knot (j + 1) and t = n − k + 3
0 otherwise

(6)

Bj,k (t) =
(t − Knot (j)) × Bj,k−1 (t)
Knot (j + k − 1) − Knot (j)

+
(Knot (i + k) − t) × Bi+1,k−1 (t)

Knot (j + k) − Knot (j + 1)
(7)⎧⎨⎩

Knot (j) = 0 if j < k
Knot (j) = j − k + 1 if k ≤ j ≤ n
Knot (j) = n − k + 2 if n < j

(8)

Where t varies from 0 to n−k+3 in constant steps, which offers
a series of discrete points [13].

2.3. Path planning model

There are many examples of UAV applications in various disas-
ters scenarios, such as search, rescue and assessment operations.
When disasters occur, UAVs should be sent to disaster sites as

quickly as possible. The flight distance of UAVs should be as short
as possible. However, there are many challenges along the path,
such as mountains and bad weather. Therefore, the purpose of
path planning is to minimize the flight distance and risk while
meeting the constraints of UAVs and disasters.

Through the B-Spline curve, the path can be represented as
a series of discrete points, such as (p0, p1, p2, . . . , pk, . . . , pN+1).
The coordinates of pk are (xpk, ypk, zpk). p0 is the starting point
and pN+1 is the ending point i.e., the location of the disaster site.
The first objective is to minimize the flight distance between the
starting point and the disaster site. Generally, the shorter the
distance, the less time is required. The distance can be calculated
by the Euclidean operator as follows:

f1 =

N∑
k=0

dk (9)

dk =

√
(xpk+1 − xpk)2 + (ypk+1 − ypk)2 + (zpk+1 − zpk)2 (10)

Where k is the index of discrete points from 0 to N .
Given that the size of a UAV, its horizontal direction cannot be

omitted. By following Ref. [18], a safe distance rsafe is introduced
to guarantee that the UAV avoids the terrain boundary.

Let pk be the discrete point of the UAV path with the coordi-
nates (xpk, ypk, zpk) in Fig. 1(a). Point pk can be projected to the
horizon (x-axis and y-axis). Fig. 1(b) shows a local magnification,
where Dtp is the projection point of pk, and the dashed line is the
projection of the terrain mesh. rsafe is introduced to ensure that
the UAV can avoid the terrain boundary. The six filled dot points
in Fig. 1(b) are in the range of rsafe. In other words, these points
will threaten the safety of UAVs. The threat risk can be expressed
as follows:

tk =

Ngk∑
j=1

(
rsafe
rk,j

)2

(11)

Where Ngk is the total number of terrain mesh point in the range
of rsafe, and rk,j is the distance between the kth discrete projection
point and the jth terrain mesh point. The overall threat can be
obtained as follows:

f2 =

N+1∑
k=0

tk (12)

The UAV path must meet at least three conditions. The first is
that the UAV cannot collide with the terrain, which requires that
these discrete points be above the terrain boundary. The value of
the z-axis should be greater than the corresponding terrain.

cv1 =

N∑
k=1

c1k (13)

c1k =

{
0, if zpk − f

(
xpk, ypk

)
− zmin > 0

zpk − f
(
xpk, ypk

)
− zmin, otherwise

(14)

Where (xpk, ypk, zpk) is the coordinate value of discrete point pk,
zmin is the minimum safe height in the vertical direction, and
f
(
xpk, ypk

)
is the terrain function. The terrain value of the z-axis

can be calculated.
The second condition is that the angle of the UAV is lim-

ited. It should not exceed a predetermined maximum angle θmax.
The turning angle can be calculated by these discrete points as
follows:

cv2 =

N−1∑
k=1

c2k (15)

http://www.youdao.com/w/simultaneously/#keyfrom=E2Ctranslation
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Fig. 1. The risk modelling..

c2k =

⎧⎨⎩0, if cos−1(
−−−−→pkpk+1·

−−−−→pkpk−1
∥
−−−−−→ppkpk+1∥∥

−−−−→pkpk−1∥
) − θmax < 0

cos−1(
−−−−→pkpk+1·

−−−−→pkpk−1
∥
−−−−−→ppkpk+1∥∥

−−−−→pkpk−1∥
) − θmax, otherwise

(16)

Where pk, pk+1 are two discrete and continuous points along the
path, and the range of k is between 0 and N.

The third condition is the limited UAV slope. The UAV ma-
noeuvrability is limited by the minimal climbing slope βi and the
maximal climbing slope αk [32]. Both slopes αk and βk are related
to the altitude zpk. They can be computed as follows:

βk = 2.5063 × 10−9z2pk − 6.3014 × 10−6zpk − 0.3257 (17)

αk = −1.5377 × 10−10z2pk − 2.6997 × 10−5zpk + 0.4211 (18)

The UAV slope at the kth point (xpk, ypk, zpk) can be obtained
by Eq. (19):

Sk =
zp(k+1) − zpk√

(xp(k+1) − xpk)2 + (yp(k+1) − ypk)2
(19)

All points along the path are subject to the constraint. If the
slope of the point is out of the range [βk, αk], it will be penalized.
Otherwise, there is no penalization. The penalty function can be
expressed as follows:

cv3 =

N−1∑
k=1

c3k (20)

c3k =

⎧⎨⎩
0, if βk < Sk < αk

Sk − αk, Sk > αk

βk − Sk, Sk < βk

(21)

Based on the above discussion, the UAV path planning model
can be depicted as follows:⎧⎪⎨⎪⎩
f = w1f1 + w2f2

cv1 = 0
cv2 = 0
cv3 = 0

(22)

Where w1 and w2 are relative weights between path length and
risk, w1 + w2 = 1. cv is used to measure the violation degree of
infeasible routes against constraints. The smaller the value of cv,
the better the path, and vice versa. The problem is a typical COP.
The mining Eq. (22), while satisfying three constraints through
EAs, can result in a set of B-Spline control points, which can
generate the desired path.

3. The proposed algorithm

DE, a type of EA, is a straightforward algorithm that is widely
used to optimize unconstrained optimization problems. The main

procedures of DE are mutation, crossover, and selection. Com-
pared with the selection and crossover operators, the mutation
operator has attracted increasing attention. There are various
mutation operators, DE/rand/1, DE/rand/2, DE/best/1, DE/current-
to-best/1, DE/rand-to-best1/, and DE/rand-to-best/2/, which are
utilized to generate new population [33,34].

Taken DE/rand/1 as an example:

vi = xr1 + F ·
(
xr2 − xr3

)
(23)

Where r1, r2, r3 are three integers, i ̸= r1 ̸= r2 ̸= r3, whose
range are between 1 and the population size, and F is a scale fac-
tor. Three individuals xr1 , xr2 , xr3 are randomly selected from the
current population. There is no prejudice for which individuals
are feasible or not. The operator is unfair when the population
has both feasible and infeasible individuals at the same time. It
is desirable that increasingly more feasible solutions should be
selected to generate offspring. Just as in biology, some individuals
will have high fitness, while others have low fitness. Low-fitness
individuals have a high probability of dying in their generation.
High-fitness individuals have a high chance of surviving and
producing offspring.

However, the DE/rand/1 operator results in poor exploitation
as it has no search direction. It is necessary to strengthen the
exploitation ability. In the COP, feasible solutions contain in-
formation that satisfies constraints, and they should have more
possibilities to generate offspring. Conversely, infeasible solutions
violate constraints. These solutions have imperfect information.
According to the constraint domination theory, the worse the
constraint violation, the worse the individual [30]. These indi-
viduals should have a lower chance to be selected to generate
offspring. Based on the motivation, the current population is
divided into feasible and infeasible individuals. For feasible in-
dividuals, fitness values are used to determine the possibility
that they are selected. For infeasible individuals, the worse the
constraint violation, the lower the chance of selection.

Ranks depend on fitness values and the constraint violation.
According to the constraint domination theory, feasible individu-
als with smaller fitness values are better than feasible solutions
with larger fitness values; feasible individuals are better than
infeasible individuals, and infeasible individuals with smaller con-
straint violations are better. The better the individual is, the
smaller the ranking is. Suppose that there are N solutions, n1
feasible solutions and n2 infeasible solutions, in which N = n1 +

n2. n1 feasible solutions are ranked by descending order of their
fitness values. n2 infeasible solutions are sorted by descending
order based on their constraint violations. As feasible solutions
are better than infeasible solutions, the ranking number of n1
feasible solutions is lower than that of n2 infeasible solutions.

http://www.youdao.com/w/prejudice/#keyfrom=E2Ctranslation
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Algorithm 1 Sort individuals
Input: individuals x, the fitness values f and corresponding
constraint violations cv, population size N
Output: the sorted newx and their fitness values newf
1: Divide individuals into feasible and infeasible solutions
according to their cv
2: Sort feasible solutions according to their fitness val-
ues by descending order and form individuals order x1 and
corresponding fitness values f1
3: Sort infeasible solutions according to their constraint vio-
lations by descending order and form individuals order x2 and
corresponding fitness values f2
4: newx = [x1; x2];
5: newf = [f1; f2];

The ranking method for the global unconstrained optimization
problem is adopted [35]. The selection probability P (j) can be
calculated as follows:

P (j) =
N − j
N

(24)

Where N is the population size, and j(j = 1, 2, . . . ,N) is the
ranking index of individuals. The better the individual is, the
higher the selection probability is. Algorithm 2 is implemented to
select three vectors from the current population. The operator is
similar to the tournament selection in GA. It is used to accelerate
the convergence of the algorithm and improve the exploitation
capacity.

Algorithm 2 Ranking selection method
Input: The vector index i, N
Output: The selected index r1, r2, r3
1: for j = 1:N
2: p (j) =

N−j
N ;

3: end
4: r1 = floor (rand × N) + 1;
5: while(rand > p(r1)|r1 == i)
6: r1 = floor (rand × N) + 1;
7: end
8: r2 = floor (rand × N) + 1;
9: while(rand > p(r2)|r2 == r1|r2 == i)
10: r2 = floor (rand × N) + 1;
11: end
12: r3 = floor (rand × N) + 1;
13: while(r3 == r1|r3 == r2|r3 == i)
14: r3 = floor (rand × N) + 1;
15: end

When three integers r1, r2, r3 are selected, three individuals
xr1 , xr2 , xr3 will be utilized to generate vector vi. When three
individuals from algorithm 2 are obtained, they have higher prob-
abilities of being feasible solutions, especially in the later phase of
the evolution. It cannot be guaranteed that three individuals are
feasible as randomness is one of the main features of EAs. Accord-
ing to the above ranking method, feasible solutions have higher
probabilities, while infeasible solutions have lower probabilities.

For the mutation phase, DE/rand/1 and DE/best/1 are widely
used. DE/rand/1 is to search around xr1 , while DE/best/1 is used
to search for the best individual found so far. The convergence
of DE/best/1 is better when the diversity is weak. However,
DE/rand/1 performs the random search, which results in weak
convergence. The proposed algorithm can search for the best
individual among the three individuals xr1 , xr2 , xr3 , which can
combine the mechanism of both DE/best/1 and DE/rand/1. Thus,
the convergence of the algorithm can be improved, and the diver-
sity of the population does not deteriorate. In Algorithm 3, we di-
rectly compare the fitness values of three individuals xr1 , xr2 , xr3 .

The algorithm searches around the individual with the best fit-

ness value among the three individuals xr1 , xr2 , xr3 . The algorithm

pushes the population towards the best solution.

Algorithm 3 Mutation
Input : xr1 , xr2 , xr3 and their fitness value f

(
xr1

)
, f

(
xr2

)
, f (xr3 )

Output: The vector v

1: if(f
(
xr1

)
≥ f

(
xr2

)
&&f

(
xr1

)
≥ f (xr3 ))

2: v = xr1 + F ·
(
xr2 − xr3

)
3: return
4: end
5: if(f

(
xr2

)
≥ f

(
xr1

)
&&f

(
xr2

)
≥ f (xr3 ))

6: v = xr2 + F ·
(
xr1 − xr3

)
7: return
8: end
9: if(f

(
xr3

)
≥ f

(
xr2

)
&&f

(
xr3

)
≥ f (xr1 ))

10: v = xr3 + F ·
(
xr1 − xr2

)
11: return
12: end

The crossover operator is used to generate a trial vector u as

follows:

uj
i =

{
v
j
i if randj(0, 1) ≤ CR or (j = jrand)

xji others
(25)

Where i(i = 1, 2, . . . ,N) is the index of the population size,

N is the population size, j(j = 1, 2, . . . ,D) is the index of the

problem dimension and D is the dimension of the problem, CR is

the crossover operator, and jrand is a random number between 1
and D. jrand is to ensure that uj

i is different from x.

As the conventional DE is used to optimize the unconstrained

optimization problem, we can extend it to the constrained opti-

mization problem. Generally, the penalty method and constraint

domination are often used to make comparisons between feasible

and infeasible solutions [36]. As the latter is robust, it is adopted

here.

xi =

⎧⎪⎪⎨⎪⎪⎩
ui if f (ui) ≤ f (xi) and cv (ui) = cv (xi) = 0
ui if cv (xi) > cv (ui) > 0
ui if cv (ui) = 0 and cv (xi) > 0
xi otherwise

(26)

Where i is the index of the population size (i = 1, 2, 3, . . . ,N), N

is the population size, and f (ui), f (xi), cv (ui), cv (xi) are fitness

values and constraint violations of individual xi and trial vector ui.

If both are feasible solutions, xi will be replaced by ui when the

fitness value of ui is lower than xi. If individual xi is an infeasible

solution, ui will take the place of xi when ui is a feasible solution

or the constraint violation of ui is smaller than xi.

Based above analysis, the pseudocode of the proposed algo-

rithm is depicted as follows:
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The proposed algorithm CDE
1: Generate the initial population x
2: Evaluate the fitness value f and corresponding constraint
violations cv
3: While the stop criterion is not met do
4: [x, f ] = Sort(x, f , cv);
5: for i = 1:N
6: [r1 r2 r3] = RankingSelection(i);
7: vi = Mutation(xr1 , xr2 , xr3 , f

(
xr1

)
, f

(
xr2

)
, f (xr3 ));

8: end
9: for i = 1:N
10: for j = 1:D
11: if(randj [0, 1) ≤ CR or (j = jrand))
12: uij = vij;

13: else
14: uij = xij;
15: end
16: end
17: for i = 1:N
18: Evaluate ui
19: if(ui is better than xi)
20: xi = ui;
21: end
22: end
23: end while

First, the population is randomly generated in the search
space as the initial population, and their fitness values and corre-
sponding constraint violations are evaluated. By calling the sort
function, the population is sorted from the best to the worst.
The vector is generated through the well-designed mutation and
crossover. The offspring will be obtained by the selection operator
and enter into the next evolution.

The computational complexity of the proposed algorithm for
one generation is presented as follows. Given the population size
to be N , the dimension to be D. The complexity of dividing the
population into feasible and infeasible individuals is O(N). The
sorting of these individuals is O(log(N)). The probability calcu-
lation is O(N). The complexity of the DE algorithm is O(N ×

D). Therefore, the total complexity of the proposed algorithm is
O(2N + log (N) + N × D), which does not significantly increase
compared with the conventional DE.

4. UAV path planning based on CDE

We now use the proposed CDE to address the UAV path
planning problem. In Section 2, the problem was formulated as
the COP. The details of the procedure are presented as follows:

Step 1: Set disaster scenarios. In general, massive disasters
often happen in remote mountainous areas. A meshed 3-D terrain
can be generated to simulate the disaster scenario. The coordi-
nates of starting point p0 are given beforehand. The coordinates
of the destination point pN+1 are also specified.

Step 2: Path plan modelling. Set the UAV path parameters,
such as safe distance rsafe and maximal turning angle θmax. Exploit
the B-spline to generate UAV paths and establish the problem as
an optimization problem with constraints.

Step 3: Initialization parameters of CDE. Initialize the param-
eters of CDE, including the maximal generation Gmax, population
size, scaling factor F, and crossover rate Cr. CDE randomly gen-
erates a number of individuals in the specified range to prevent
the UAV from going out of control. The values of each individual
are the physical coordinates of the freely moving B-spline control
points. Each B-spline curve is constructed by each individual, and
the starting point and the destination point. The fitness value and
corresponding constraint can be evaluated by Eq. (22).

Step 4: Optimize the path planning by CDE. The problem is
optimized in four stages: adaptive selection, adaptive mutation,
crossover, and selection.

Step 5: Stopping criteria. The procedures of step 4 will end
when the iteration reaches Gmax. The output of the proposed
algorithm will be the generated path, which will guide the UAV.

5. Experiments and analysis

5.1. Experimental setup

Generally, the testing terrain must be given first. It is often
represented by a 3-D model [13] as follows:

z (x, y) = sin (y + a) + b · sin (x) + c · cos (y) + d

· cos (y) + e · cos
(
f ·

√
y2 + x2

)
+ g · sin

(
g ·

√
y2 + x2

)
(27)

Where a, b, c, d, e, f , g are constants. They are defined to gener-
ate a smooth surface to simulate the terrain. Here, a = 1, b =

1, c = 1.8, d = 1.8, e = 1, f = 1.8, g = 1. The start point of UAV
and the destination point are [4 4 1], [18 17 10], respectively.

For the parameters of the UAV, the maximal turning angle θmax
is 30◦, and the minimal safe distance rsafe is 200 m. Eight points
are used to generate the B-spline; in addition to the starting and
ending points, there are six free points. Therefore, the dimensions
of each algorithm are set to 6 × 3 = 18. There are three
experiments corresponding to three disaster scenarios. We have
set three weights ([w1 = 0.8, w2 = 0.2], [w1 = 0.5, w2 =

0.5], [w1 = 0.2, w2 = 0.8]) among two objective functions.
Three weights denote different disaster scenarios and balance the
travelling distance and risk of the UAV.

Two indicators are used to measure the performance of the
algorithms:

Feasiblerate = (feasibleruns)/(totalruns) (28)

f
(
x∗

)
= min (f (x)) (29)

Where feasible runs denote that at least one feasible solution is
found in the given function evaluations, and f (x∗)means the best
results obtained in this run.

5.2. Comparison algorithms

Four representative state-of-the-art DE variants are chosen
to draw comparisons. Feasible and infeasible DE (FIDE) adopts
different mutation strategies for feasible solutions and infeasible
solutions [27]. Multi-objective optimization techniques are com-
bined with DE to design CMODE to cope with the COP [37]. (µ +

γ )-constraint DE and an adaptive trade-off model are integrated
to form the (µ+γ )-CDE algorithm [38]. DE with ranking (RankDE)
mutation operators is proposed to guide the search direction [35].

The parameter settings of the proposed algorithm, FIDE, and
RankDE are as follows: the population size is 50, crossover con-
stant CR increases from 0.4 to 0.8 linearly, and scale factor F is
reduced from 1 to 0.7. The parameter configurations of (µ +

γ )-CDE and CMODE are based on their original references [37,38].
To draw fair and thorough comparisons, the maximal function

evaluations are set according to the constraints posed to the
UAV path planning. If the first constraint (c1) is considered in
Eqs. (13)–(14), the maximal function evaluations are set to 10000.
If both c1 and the second constraint (c2) in Eqs. (15)–(16) are
considered, they are set to 20000. If three constraints c1, c2
and the third constraint in Eqs. (15)–(16) are considered during
optimization, they are set to 30000. Each algorithm runs ten
times independently for each disaster scenario.
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Table 1
The two performance indicators of five algorithms.
W Constraint CDE RankDE (µ + γ )-DE FIDE CMODE

[0.8, 0.2]

c1
Mean 20.484 20.939+ 21.948+ 21.652+ 21.636+

Std 0.0312 0.168 0.199 0.203 0.0345

Success rate 100% 100% 100% 100% 100%

c1+c2
Mean 20.00 20.04= 20.77+ 20.90+ 20.47+

Std 0.013 0.016 0.0457 0.056 0.029

Success rate 100% 100% 100% 100% 100%

c1+c2+c3
Mean 26.45 27.9= 28.50= 33.60= 26.5=

Std 0.128 11.16 18.23 38.14 0.335

Success rate 100% 100% 100% 60% 100%

[0.5, 0.5]

c1
Mean 14.139 14.244= 14.973+ 14.726+ 14.659+

Std 0.0452 0.0928 0.0927 0.0538 0.0346

Success rate 100% 100% 100% 100% 100%

c1+c2
Mean 13.568 13.677= 14.11+ 14.785+ 14.058+

Std 0.0228 0.0168 0.0298 0.1123 0.017

Success rate 100% 100% 100% 100% 100%

c1+c2+c3
Mean 19.56 20.937+ 20.149= 25.795+ 19.40=
Std 3.578 1.264 9.02 107.262 5.08

Success rate 100% 100% 90% 30% 100%

[0.2, 0.8]

c1
Mean 6.702 6.717= 7.029+ 6.938+ 6.863+

Std 0.0163 0.0126 0.0112 0.0045 0.0011
Success rate 100% 100% 100% 100% 100%

c1+c2
Mean 6.393 6.377= 6.774+ 7.020+ 6.624+

Std 0.0105 0.0105 0.0322 0.0114 0.0084
Success rate 100% 100% 100% 100% 100%

c1+c2+c3
Mean 9.218 10.313+ 11.442= 12.427= 10.090=

Std 1.831 1.971 1.368 5.843 0.459
Success rate 100% 100% 100% 90% 100%

+/= /− 3/6/0 6/3/0 7/2/0 6/3/0

5.3. Experimental results and analysis

The statistical results of the two performance indicators are
obtained and listed in Table 1, where the mean values of f (x∗)
and feasible rate are recorded, and the best values are highlighted.
It can be seen that when the constraints c1, c1+c2 are considered,
the success rate is 100%, indicating that all five algorithms can
find safe and smooth UAV paths in the run. However, when three
constraints are imposed on the optimization problem, CDE can
obtain the highest success rate up to 100%. CMODE ranks second.
However, the success rate of FIDE is only 30%, which is the worst
among the five algorithms when w1 = 0.5.

The mean and standard deviation of f (x∗) can indicate the
search capacity and robustness of a bio-inspired algorithm. The
mean results of f (x∗) are the lowest in the first and third scenar-
ios, and the standard deviation is the lowest in the first scenario.
The proposed algorithm has obtained the best performance in
all three situations. Therefore, CDE has achieved superior perfor-
mances in the statistical sense.

When three constraints are considered in the optimization
process, it is tough to find a feasible solution for the algorithm.
The feasible space becomes very small, and various infeasible
solutions are generated in the evolution. As FIDE uses only two
mutations DE/rand/1 and Gauss mutation for feasible and infea-
sible solutions, respectively, the search ability is limited when
the problem becomes complicated. Although the selection op-
erator RankDE is implemented and the individuals with bet-
ter information can be selected with high probabilities, there
is no search direction. The convergence capacity is relatively
weak. (µ + γ )-DE adopts three mutation strategies and binomial

crossover to generate the offspring. There is no selection operator
during the mutation phase. CMODE combines the multi-objective
optimization theory into the algorithm. The whole process is
somewhat complicated. In CDE, the better the individual, the
greater its chance of being selected to enter the mutation stage.
The mutation operator can make the algorithm search around
the best individual among the three selected individuals. The
novel mutation mechanism can improve the local search ability
and maintain the exploration capacity. The algorithm gives the
population more chances to enter feasible space. The opportunity
for generating feasible solutions increases relative to the other
algorithms. Therefore, the performance is superior to the four
state-of-the-art DE variants.

The best UAV paths generated by CDE, RankDE, (µ + γ )-
DE, FIDE, and CMODE, are plotted in Figs. 2–4 when w1 =

0.8 and w2 = 0.2. As is shown, the five algorithms can success-
fully find a safe and smooth path when the constraints are c1 and
c1+c2. The routes do not change significantly when the constraint
is changed from c1 to c1+c2. This indicates that solutions gener-
ated with constraint c1 also satisfy constraint c2. However, when
three constraints are considered together, all paths are changed
significantly, which means that solutions generated using con-
straints c1 and c2 do not satisfy constraint c3. It is complicated
to meet constraint c3. The paths generated have at least a corner.
FIDE is the worst among them, as there are many corners along
the route. These corners will make the UAV flight very difficult.
Compared with RankDE, FIDE, and (µ + γ )-DE, the path from
CMODE is smoother.

To draw a comprehensive conclusion, nonparametric statisti-
cal tests at a significant level of 5% have been implemented to
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Fig. 2. The UAV paths from five algorithms when c1 is considered.

Fig. 3. The UAV paths from five algorithms when both c1 and c2 are considered.

validate the significance of the better performance achieved by

the proposed algorithm with respect to the other algorithms [39].

The results are listed in Table 1, in which ‘‘+ (Better)’’, ‘‘= (Same)’’,

and ‘‘- (Worse)’’ reveal that the proposed algorithm performs

significantly better than, almost the same as, and worse than

the compared algorithm, respectively. It can be seen that the

proposed algorithm is better than the compared algorithms in

most scenarios.

5.4. Discussion

To further validate the effectiveness of CDE, an additional
experiment has been performed. The experiment studies the
function evaluations that each algorithm needs to find a feasible
solution. All parameters of the five algorithms are the same as in
the above section. Three constraints are considered, as they are
the most difficult to optimize. The results are plotted in Fig. 5.
It can be observed that CDE outperforms the other algorithms. It
needs the fewest function evaluations to find a feasible solution.
It is worth noting that time is very limited during disasters, which
requires that the path plan be generated as soon as possible. With
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Fig. 4. The generated paths from five algorithms when three constraints are considered.

Fig. 5. The minimal function evaluations to find a feasible solution.

the help of the adaptive selection mutation operator, CDE can
search towards the feasible space more quickly. RankDE is ranked
the second.

To measure the advantage of adaptive selection mutation, the
proposed algorithm is compared with the conventional DE. In
the three constraint scenarios (w1 = 0.8 and w2 = 0.2), the
same experiments are implemented on DE. All parameters of DE
are same to those of CDE. The comparison results are listed in
Table 2. The results of the conventional DE are worse than those

of the proposed algorithm in all three scenarios. Especially when
three limitations are considered together, the conventional DE
cannot find feasible solutions in four runs. This is because the
conventional DE algorithm has poor convergence ability. As the
feasible space narrows, it is tough for DE to escape infeasible
areas. Therefore, it cannot solve complicated constraint problems.
However, the proposed algorithm with adaptive selection muta-
tion can enhance the convergence rate and push the population
towards feasible regions. Therefore, it can find better results than
the conventional DE.

The convergence curves of the two algorithms are plotted in
Fig. 6 when c1, c1+c2, c1+c2+c3 are considered. It can be seen
that DE shows inferior convergence as it has no guide direction
for the mutation operator and falls into the local optimum. CDE
has achieved faster convergence speed and smaller fitness values.
The results have verified that the proposed mutation operator can
contribute to improving the search ability of CDE.

6. Conclusions

UAVs are among of the most useful tools for situational aware-
ness in disaster scenarios. In this paper, UAV path pathing is
discussed and constructed as a COP. The fitness functions include
the travelling distance and risk, and three constraints are consid-
ered: height of the UAV, angle of the UAV, and limited UAV slope.
The objective of UAV path planning is to minimize the fitness
functions and satisfy three constraints. The UAV path is generated
by free points and represented as a series of discrete points. In
this paper, a novel CDE algorithm based on the DE algorithm is
implemented to solve the problem. In CDE, an adaptive selection
mutation operator is designed to improve the exploitation ability.
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Fig. 6. The convergence curves of CDE and the conventional DE.

Table 2
The comparison results between CDE and the conventional DE.
Constraint Criteria CDE DE

c1
Mean 20.4839 25.97

Std 0.0312 0.19

Success rate 100% 100%

c1+c2
Mean 20.00 24.86

Std 0.013 0.160

Success rate 100% 100%

c1+c2+c3
Mean 26.45 39.55

Std 0.128 14.10

Success rate 100% 60%

Different individuals have different probabilities to be selected to
enter the mutation phase according to their fitness values and
constraint violations.

Four state-of-the-art DE variants, FIDE, CMODE, (µ + γ )-CDE,
and RankDE, are selected to draw comparisons. CDE is applied to
solve the UAV path planning model. The five algorithms are com-
pared according to their statistical results and generated paths.
The comparisons results have indicated that the CDE algorithm is
superior to the other four algorithms. The proposed algorithm can
successfully find the optimal solution and generate smooth paths,
which make it more appropriate in the application of disaster
emergency management.
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