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In the summer of 2018, Northeast China was af-
fected by an unprecedentedly long and intense heat 
wave. The China Meteorological Administration 

issued 33 days of consecutive “high temperature-
alert” warnings from 14 July to 15 August in 2018. 
Record-breaking hot minimum temperatures 
were observed in a large area of Northeast China 
(34°–55°N, 105°–135°E) with a stable spatial pat-
tern on time scales of 20–40 days (Fig. 1a; see also 
Fig. ES1 in the online supplemental material). 
Further, minimum temperatures were more ex-
treme, with a much larger record-breaking area than 
maximum temperatures (Fig. ES1). On 30 July, the 
number of heat-related hospitalization admissions 
broke the historical record in Shenyang, a large 
city in Northeast China (http://news.lnd.com.cn 
/system/2018/08/01/000008645.shtml). The aqua-
culture industry in Liaoning Province suffered from 
economic loss of 6.87 billion renminbi (RMB) (www 
.zhonghongwang.com/show-256-103674-1.html). 

Thus, this unprecedented persistent and extreme heat 
wave event led to severe impacts, including increased 
human morbidity and mortality, reduced agriculture 
productivity, and increased strain on power systems 
and water supplies.

Anthropogenic warming has been shown to drive 
recent record-breaking heat and summer extremes 
in different regions of the world (Hansen et al. 2012; 
Lewis and Karoly 2013). Previous heat event attribu-
tion studies in China usually considered seasonal 
mean and maximum temperature covering a fixed 
period (e.g., Sun et al. 2016a; Ma et al. 2017), with few 
studies focusing on consecutive minimum tempera-
tures when there is the strongest signal in summer. 
Daily minimum temperature allows people and eco-
systems to recover from thermal stresses experienced 
during the previous day (Schwartz 2005) and is a 
strong predictor for human morbidity and mortality 
(Laaidi et al. 2012; Madrigano et al. 2015; Murage 
et al. 2017). Previous studies show that anthropo-
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genic influences, including anthropogenic emission 
of greenhouse gases and urbanization leading to the 
expansion of urban heat islands, has contributed to 
higher summer minimum temperatures in Eastern 
China (Sun et al. 2016b; Wang et al. 2017). Hence, this 
study aims to investigate whether anthropogenic in-
fluences have increased the frequency of the monthly 
time scale heat waves like the summer 2018 event over 
Northeast China.

DATA AND METHODS. Observations. We used 
observed daily minimum temperatures at about 2,400 
meteorological stations over China for the period 
1961–2018. These were quality-controlled and ho-
mogenized by National Meteorological Information 

Center of China (Ren et al. 2012). We also used daily 
atmospheric circulation field data from ERA-Interim 
(Dee et al. 2011), including geopotential height, hori-
zontal wind, and specific humidity.

Model. Simulations from the atmosphere model 
HadGEM3-A-N216 at a horizontal resolution of 0.56° 
× 0.83° were used in this study (Christidis et al. 2013; 
Ciavarella et al. 2018). Three ensembles were used:

• An 15-member ensemble of simulations for period 
1960–2013, in which the model is forced by ob-
served sea surface temperatures (SST) and sea ice 
concentrations (SIC) from HadISST (Rayner et al. 
2003), and a comprehensive package of historical 

anthropogenic atmospher-
ic forcing (Historical).

• A 525-member ensemble 
of simulations for 2018 
on ly  (cou nter fac t ua l 
world), driven with pre-
industrial atmospheric 
forcing and the anthro-
pogenic contribution re-
moved from SST and SIC 
(HistoricalNatExt; see the 
online line supplemental 
information for details).

• A second 525-member 
ensemble of simulations 
(factual world), driven as 
for “Historical” but for 
2018 only (HistoricalExt).

Event definition. An index of 
30-day moving average of 
daily minimum temperature 
anomalies (TNx30) over 
the study area was defined. 
First, to remove the seasonal 
cycle at each station, daily 
minimum temperature (Tmin) 
anomalies relative to the 
daily 1961–2013 climatol-
ogy were computed in each 
calendar day. We then grid-
ded these anomalies to the 
0.56° × 0.83° model resolu-
tion by averaging all station 
anomalies in each grid box. 
The gridded Tmin anomalies 
were then area averaged over 
Northeast China (34°–55°N, 

Fig. 1. Observed characteristics of the heat wave in Northeast China during 
12 Jul–10 Aug 2018, with maximum consecutive 30-day Tmin anomalies in 
summer 2018 (TNx30). (a) Spatial pattern of TNx30 (shading; unit: °C) rela-
tive to 1961–2013. Locations with record-breaking and second highest values 
since 1961 are shown with black and blue dots, respectively. (b) Time series 
of TNx30 anomalies over Northeast China (black rectangle shown in Fig. 1a) 
from 1961 to 2018. (c) Circulation field from ERA-Interim with specific hu-
midity anomalies (shading; unit: g kg−1) and 850-hPa moisture flux anomalies 
(vectors). The light black contours denote the 500-hPa geopotential height 
anomalies. The 12 Jul–10 Aug 2018 mean geopotential height (blue lines) and 
climatology (red lines) are also shown.
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105°–135°E), and finally used to calculate the hottest 
30-day running mean Tmin in summer (June–August) 
for each year. For model datasets, the same process 
was followed except rather than gridding the simula-
tions, grid points were used only if they were land and 
there were observations in the grid box. The anomaly 
of the index TNx30 in summer was used in this study 
and the value of 2018 event (2.15°C) was chosen as 
the threshold.

To estimate probabilities, generalized extreme 
value (GEV) distributions were fitted to both simu-
lated and observed data. A two-sided Kolmogorov–
Smirnoff (K-S) test was then applied to test if the 
distributions of the observations and historical simu-
lations from 1961 to 2013 are from the same popula-
tion. To estimate the anthropogenic contribution to 
the heat wave event like 2018 summer in Northeast 
China, the risk ratio (National Academies of Sci-
ences, Engineering, and Medicine 2016) defined as 
P(HistoricalExt)/P(HistoricalNatExt) was calculated, 
where P(HistoricalExt) and P(HistoricalNatExt) are 
the probability of the event in factual and counter-
factual world, respectively. We bootstrapped with 
replacement 1,000 times to generate PDFs, and then 
computed 1,000 risk ratios and then used that to 
compute uncertainties in risk ratios.

RESULTS. Observed events and model performance. 
In summer 2018, the regional average of TNx30 over 
Northeast China was 3 standard deviations of inter-
annual variability above the 1961–2013 climatology 
and the highest on record since at least 1961 (Fig. 1b). 
This heat wave was accompanied by positive geopo-
tential height anomalies over Northeast Asia, induced 
by the unprecedented northward shift of the western 
Pacific subtropical high (Fig. 1c; Liu et al. 2019). At 
low levels (850 hPa), anomalous northwestward 
moisture transportation from the warm Bohai Sea 
resulted in increased specific humidity (Fig. 1c) and 
consequently contributed to significant nighttime 
warming.

Model performance was evaluated using the 
ensemble mean of the historical ensemble, which 
reasonably reproduced the time series of TNx30 
anomalies, with a correlation coefficient of 0.70 
(Fig. 2a). This means that forcing, SST, and SIC 
variations explain about half of the observed vari-
ance in TNx30. The distributions of observed and 
simulated TNx30 for summers during 1961–2013 are 
also statistically indistinguishable based on the K-S 
test (p = 0.80; Fig. 2b). Such good performance of the 
HadGEM3-A-N216 simulations provides the basis for 
further attribution analysis.

Anthropogenic impact on the risk of heat waves. There 
is a shift of the PDF to warm anomalies from Histori-
calNatExt to HistoricalExt (Fig. 2c), indicating that 
anthropogenic influences have increased the prob-
ability of heat wave events. Since the magnitude of 
this event lies at the far warm-end tail of PDF, events 
like 2018 are very rare in the counterfactual world. 
Only one member in 525-member HistoricalNatExt 
ensemble exceeds the 2018 threshold. By contrast, the 
estimated probability is 0.02 in factual world. These 
indicate that the 2018-like night-time heat event is 
extremely rare without anthropogenic warming. The 
estimated return period of heat wave events hotter 
than 2018 is about one-in-60-years with anthropo-
genic warming, with 5th–95th percentile uncertainty 
ranges of 43–116 years (Fig. 2d). A second threshold 
was also selected, defined as the second-most extreme 
year (2017, with an anomaly of 1.55°C). For this 
threshold, the heatwave is 57 times more frequent in 
the factual world (P(HistoricalExt) = 0.17) than the 
counterfactual world [P(HistoricalNatExt) = 0.003], 
which confirms the role of anthropogenic warming 
in these heat events. In terms of return period, for a 
one-in-10-year event, the magnitude of TNx30 in 2018 
is estimated to be 1.7°C (1.7°–1.8°; 5th–95th) in the 
factual world, and 0.8°C (0.8°–0.9°; 5th–95th) in the 
counterfactual world (Fig. 2d). For a one-in-50-year 
event, the estimated magnitude of a heat event is 2.1° 
(2.0°–2.2°) and 1.2°C (1.1°–1.3°) in the counterfactual 
and factual worlds (Fig. 2d). The change in return 
level (0.9°C) between counterfactual and factual 
simulations is generally consistent with mean warm-
ing, as the shift in mean state between with (0.95°C) 
and without (−0.04°C) anthropogenic influence was 
0.99°C (Fig. 2c). Besides, the uncertainty range of 
return periods increases with the rarity of events. 
We repeat our analyses by using different durations 
of either a 20-day or 40-day moving average and 
find similar risk ratio, suggesting the robustness of 
the results.

CONCLUSIONS AND DISCUSSION. North-
east China experienced a record-breaking nighttime 
heat wave in 2018 summer. This kind of 30-day night-
time heatwave was a one-in-500-year (or less) event 
in the counterfactual world. Forced by anthropogenic 
forcing and the observed 2018 SSTs, it became a one-
in-60-year event.

This unprecedentedly long-lasting nighttime heat 
wave was also related to the northwestward shift of 
west Pacific subtropical high and the anomalous 
moisture transportation from the warm ocean. Addi-
tionally, the configuration of anomalous anticyclone 



S86 JANUARY 2020|

at 500 hPa over Northeast Asia during this heat event 
was reproduced with the six hottest simulations in 
study region (Fig. ES2), confirming the role of abnor-
mal high pressure system in this heat wave event. As 
increased occurrence of anticyclonic circulations in 
the midlatitudes has made a substantial contribution 
(one-third to one-half) to the increased summer-
time temperature extremes over portions of Eurasia 
since 1979 (Horton et al. 2015), which leaves further 
questions as to whether anthropogenic warming has 
contributed to the heat waves like that in summer 
2018 through affecting the background circulation. 
This study used an atmospheric model conditioned 
on the observed SSTs. Results are inevitably affected 
by uncertainty in the representation on the SSTs in 
the counterfactual world, especially for severe events 

with return periods greater than 50 years (e.g., Spar-
row et al. 2018), and more work is necessary to better 
understand this uncertainty.
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