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ANTHROPOGENIC INFLUENCE ON 2018  
SUMMER PERSISTENT HEAVY RAINFALL  

IN CENTRAL WESTERN CHINA
Wenxia Zhang, Wei Li, Lianhua Zhu, YuanYuan Ma, LinYun Yang, Fraser C. Lott,  

Chunxiang Li, siYan Dong, siMon F. B. tett, BuWen Dong, anD Ying sun

During mid-June to mid-July 2018, parts of 
Sichuan, Gansu, and Shaanxi provinces in China 
were affected by a persistent heavy rainfall event. 

Accumulated rainfall during the four-week period 18 
June to 15 July was 38% above the 1961–2010 clima-
tology. This was very close to the record (44% set in 
2016) for maximum summertime four-week rainfall 
since 1961 (Figs. 1a,b). During this persistent rainfall 
event, the maximum 1-day rainfall was the fifth most 
extreme in the wet season on record. This persistent 
intense rainfall event caused floods, landslides, and 
house collapses, affecting 2.9 million people and 
resulting in a reported direct economic loss of over 
8.9 billion Yuan (1.3 billion U.S. dollars; National 

Disaster Reduction Commission; https://reliefweb.
int/disaster/tc-2018-000110-chn).

Central western China is located to the east of 
the Tibetan Plateau and in the marginal East Asian 
monsoon region. Summer heavy rainfall here is 
mainly caused by large-scale circulation anomalies 
involving the western North Pacific subtropical high 
(WNPSH) and southwest monsoon trough, as well as 
mesoscale and synoptic-scale weather systems such 
as Tibetan plateau vortices (Zhou and Yu 2005; Dong 
et al. 2007; Ueno et al. 2011; Xiang et al. 2013; Chen 
and Xu 2016). Anthropogenic influences have been 
found on extreme rainfall events in parts of China, 
particularly to increase the intensity of short-term 

Anthropogenic forcing has reduced the probability of summer persistent heavy rainfall  

in central western China similar to 2018 by ~47%, but increased that of daily extremes  

by ~1.5 times, based on HadGEM3-GA6 ensembles.
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storms (Burke et al. 2016). Furthermore, understand-
ing how anthropogenic forcings affect the duration 
and intensity of heavy rainfall events is important 
(e.g., Burke and Stott 2017). This study examines how 
human activities have affected persistent heavy and 

daily extreme rainfalls in 2018 summer over central 
western China.

DATA AND METHODS. The 2018 rainfall event 
was largely confined to 30°–38°N, 100°–110°E (black 

Fig. 1. (a) Observed rainfall anomalies accumulated during 18 Jun to 15 Jul 2018 relative to the 1961–2010 clima-
tology over the same period (%). The black box denotes central western China (30°–38°N, 100°–110°E). (b) Time 
series of accumulated rainfall during 18 Jun to 15 Jul (bar) and Rx28day for June to August (red line) for the black 
box in (a), in percentage anomalies relative to 1961–2010. (c) GEV fit (red line) of observed Rx28day with 95% 
confidence intervals. The crosses are estimated from the empirical distributions of the observed Rx28day with 
the purple square denoting the 2018 event. Also shown are the regression of (d) column integrated moisture 
convergence (shading; mm day−1) and 850-hPa horizontal winds (vector; m s-1), (e) total column water vapor 
(mm), and (f) sea level pressure (Pa) onto standardized rainfall anomalies over central western China during 
18 Jun to 15 Jul for 1961–2018.
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box in Fig. 1a). Gridded daily rainfall observations 
(0.5° × 0.5°) for 1961–2018 are from the China Meteo-
rological Administration, using ~2400 stations over 
China with rigorous quality control (Shen et al. 2010). 
Daily circulation fields are from the NCEP–NCAR 
Reanalysis 1 (2.5° × 2.5°; Kalnay et al. 1996).

We use the latest Met Office HadGEM3-GA6-
based attribution system at N216 resolution (here-
after simply HadGEM3-A; ~60 km at midlatitudes; 
Ciavarella et al. 2018). This attribution system com-
prises a pair of multidecadal ensembles, one with both 
natural and anthropogenic forcings (Historical) and 
the other with time-varying natural forcings and all 
anthropogenic forcings fixed at 1850 levels (Histori-
calNat) and are described in the online supplemental 
material. The 2018 ensembles (termed HistoricalExt 
and HistoricalNatExt) are used in the attribution 
analysis.

We investigate the duration and intensity of heavy 
rainfall. The persistent heavy rainfall event is defined 
as the maximum accumulated rainfall over two to 
four weeks from June to August (hereafter Rx14day, 
Rx21day, and Rx28day), to avoid selection biases in 
the duration of events and test the robustness of the 
results. These three indices in 2018 summer were ob-
served to be the second highest on record since 1961. 
The daily extremes are represented by the maximum 
1-day and 3-day rainfalls (Rx1day, Rx3day), which, in 
summer 2018, were the fifth and third most extreme 
on record. Here Rx1day is defined as the summer 
maximum of regional average daily rainfall, consid-
ering that the occurrence of the Rx1day total in 2018 
was associated with and occurred during the persis-
tent rainfall. We mainly show results for Rx28day and 
Rx1day for conciseness.

As the model overestimates rainfall amount over 
this region compared to observations by 13% for the 
1961–2010 climatology (see Figs. S1a,b in the online 
supplemental material), indices are normalized. We 
employ two methods of normalization. 1) RxNday 
(N = 1, 3, 14, 21, 28) is expressed as a percentage 
anomaly relative to the 1961–2010 climatology of 
RxNday. The Rx28day (Rx1day) in summer 2018 is 
38% (27%) above the corresponding 1961–2010 clima-
tology. 2) Daily rainfall is divided by the 1961–2010 
June to August mean rainfall and then RxNday is 
computed (expressed in %). Thus, the intensity of 
Rx28day (Rx1day) in 2018 is 1.9 (5.5) times of the 
summer daily rainfall climatology. The two methods 
of normalization effectively correct the wet bias in the 
simulated rainfall indices (Figs. S2a–c). We show the 
results based on the first method of normalization 
in Figs. 2a–g. The two methods yield quantitatively 

consistent results (Figs. S2d–f), confirming the ro-
bustness of our results.

As the normalization only corrects the model 
climatologies of rainfall indices, we further evaluate 
the simulated heavy rainfall variability against ob-
servations using a Kolmogorov–Smirnoff (K-S) test. 
We fit the generalized extreme value (GEV) distribu-
tion to the rainfall indices and use it to estimate the 
occurrence probability and return periods for both 
observations and simulations. To estimate the chang-
ing likelihood due to anthropogenic forcing, the risk 
ratio (RR = PALL/PNAT) is calculated using the GEV fit, 
which compares the occurrence probability between 
the HistoricalExt under all forcings (PALL) and His-
toricalNatExt under natural forcings only (PNAT). The 
risk ratio uncertainty is estimated via bootstrapping 
1000 times, by resampling all ensemble members 
with replacement, and we show, as bracketed ranges 
after the value, the 5–95th percentiles of the empirical 
distribution throughout.

RESULTS. The observed Rx28day in summer 2018 
(38% above climatology) corresponds to a 1-in-60-yr 
event in the observed records, based on the GEV fits 
(Fig. 1c). This type of anomalous rainfall, associated 
with enhanced moisture convergence, is primarily 
driven by enhanced low-level southerly winds car-
rying warm moist air from the western Pacific. This 
in turn is associated with the intensification and 
westward extension of WNPSH, and anomalous 
atmospheric moisture availability (Figs. 1d,f).

It is crucial for the model to realistically repro-
duce the large-scale circulations responsible for 
rainfall events. Here we evaluate the simulated 
summer mean rainfall and circulation interannual 
variability, which gives a background relevant to 
persistent heavy rainfalls. For interannual variations, 
HadGEM3-A captures the large-scale circulation 
anomalies responsible for the anomalous rainfall in 
the target region well. In both model and observa-
tions, heavy rainfall is associated with low-level 
anticyclonic anomalies from eastern China to the 
western Pacific, favoring southwesterly moisture 
transport to this region (Figs. S1c,d). Burke and Stott 
(2017) report that HadGEM3-A can reproduce the 
main features of the East Asian summer monsoon 
(EASM), although the simulated mean WNPSH 
and EASM circulation is weaker and shifted east 
compared with observations (Figs. S1a,b; Rodríguez 
et al. 2017). Thus, the model generally reproduces 
the physical processes related to seasonal rainfall 
anomalies, which are relevant to persistent heavy 
rainfalls examined in this study.
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The distributions of nor-
malized heavy rainfall in the 
model and observations can-
not be distinguished using 
the K-S test (p value > 0.05; 
Figs. 2a,b). We then compare 
the distributions of heavy 
rainfall in the HistoricalExt 
and HistoricalNatExt ensem-
bles for 2018. For Rx28day, 
there is a shift toward weak-
er events if anthropogenic 
forcing is included, indicat-
ing a reduced probability 
of persistent heavy rainfalls 
(Figs. 2c,e). PNAT for Rx28day 
> 38% above climatology is 
0.070 (0.055–0.083), which 
reduces to 0.037 (0.028–
0.046) for PALL. This gives a 
risk ratio of 0.53 (0.37–0.77; 
Fig. 2g), implying that the 
likelihood of the persistent 
heavy rainfall with a magni-
tude similar to 2018 summer 
in central western China is 
reduced by approximately 
47% due to anthropogenic 
forcing by the best estimate.

For daily extremes, how-
ever, the distribution shifts 
toward intense events in 
HistoricalExt compared to 
HistoricalNatExt (Fig. 2d). 
Hence, anthropogenic forc-
ing has increased the prob-
ability of Rx1day like that 
in summer 2018 from 0.075 
(0.060–0.088) for PNAT to 
0.111 (0.091–0.128) for PALL, 
along with shortened return 
periods (Fig. 2f). This gives a 
risk ratio of 1.48 (1.14–1.93; 
Fig. 2g).

Thus, anthropogenic forc-
ing has reduced the prob-
ability of persistent heavy 
rainfalls, but increased that of 
daily extremes. The risk ratio 
remains above one for Rx1day 
and decreases consistently as 
the duration of heavy rainfall 
increases (Fig. 2g).

Fig. 2. (a),(b) Distributions of normalized Rx28day and Rx1day for observa-
tions (black) and Historical all-forcing simulations (red) for 1961–2013. The 
thin red lines denote individual members. The p values for the K-S test are 
shown at top right. (c),(d) GEV fits and (e),(f) return periods of normalized 
Rx28day and Rx1day for HistoricalExt (red) and HistoricalNatExt (blue) 2018 
simulations. The dashed black lines denote the observed event in 2018. (g) 
The best estimates (blue lines) and 90% confidence intervals (gray shadings) 
of risk ratio for different rainfall indices. Also shown are multi-member mean 
differences of JJA mean rainfall and (h) 850-hPa winds, (i) near-surface air 
temperature, and (j) specific humidity between HistoricalExt and Historical-
NatExt ensembles. Dots indicate 10% significance level for the shaded fields.
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Then why has anthropogenic forcing caused op-
posite changes in the probabilities of persistent heavy 
and daily extremes? Largely fueled by moisture con-
vergence, the intensification of daily extreme rainfall 
is related to atmospheric moistening as temperature 
rises under anthropogenic forcing (Figs. 2i,j; Allen 
and Ingram 2002; Trenberth et al. 2003).

The weakened persistent heavy rainfalls under 
anthropogenic forcing are consistent with the signifi-
cantly reduced EASM rainfall, due to the weakened 
EASM circulation (Fig. 2h). Thus, the weakened back-
ground mean circulations in response to anthropo-
genic forcing are unfavorable for summer persistent 
heavy rainfalls in central western China.

Further disentangling the contributions from 
greenhouse gases (GHG) and other anthropogenic 
forcings, specifically aerosols, would improve un-
derstanding of the attribution outcome (e.g., Rimi 
et al. 2019; Kumari et al. 2019). Despite the lack of 
separate forcing experiments from HadGEM3-A, we 
suspect that the weakening of the EASM and persis-
tent heavy rainfalls due to anthropogenic forcings 
is largely induced by aerosols. These overwhelm the 
GHG-induced intensification of EASM and heavy 
rainfalls, based on physical understandings estab-
lished in many previous studies using the CMIP5 
ensemble (Song et al. 2014; Li et al. 2015; Zhang and 
Li 2016) and single models (Burke and Stott 2017; 
Tian et al. 2018).

However, with the future reductions in aerosols 
and continued increases in GHG, the probabilities 
of both daily and persistent heavy rainfalls in central 
western China would robustly increase, along with 
a wetter EASM, according to the CMIP5 ensemble 
(Table S1 and Figs. S2g–i; future projections directly 
comparable to the HadGEM3-A attribution runs are 
not available). This is consistent with previous studies 
indicating a general intensification in EASM circula-
tion (Christensen et al. 2013; Wang et al. 2014) and 
persistent extreme rainfalls in East Asia (Chevuturi 
et al. 2018) under future warming. As such, the at-
tribution outcome for the present day is not a simple 
analog for the future climate and the adverse impact 
of GHG-induced warming on f looding risks may 
exacerbate in the future.

We repeat our analysis with the northern bound-
ary of the region modified from 38° to 40°N and 
find similar risk ratios. However, the model’s ability 
to capture the persistent heavy rainfall variability 
decreases. This is possibly because the larger region 
additionally includes different climate regimes (cf. 
dashed and solid boxes in Fig. S1a), adding complexity 
to the rainfall variations. It implies the importance 

of selecting regions based on physical considerations 
(e.g., climate regimes) when testing the spatial scales.

CONCLUSIONS. We show that anthropogenic 
forcing has opposing contributions to the probabili-
ties of persistent and daily heavy rainfalls in the cur-
rent climate. Anthropogenic forcing has reduced the 
probability of 2018 summer persistent heavy rainfall 
in central western China by ~47%, but increased that 
of daily extremes by ~1.5 times. This result is robust 
against different choices of events and methods of 
normalization. While it is a caveat of the study that 
the attribution results are based on a single-model 
ensemble, the model’s ability to generally reproduce 
the large-scale circulation anomalies related to sea-
sonal rainfall anomalies enhances the confidence in 
the results.

However, the attribution result for the present day 
is not analogous to what may be experienced in future 
with reduced aerosols, making decision-making for 
f loods in this region more challenging. The cur-
rent state-of-the-art climate models actually project 
increasing probabilities of both daily and persistent 
heavy rainfalls in this region. Further disentangling 
the contributions of GHG and anthropogenic aerosols 
on the risks of heavy rainfall, as well as quantification 
of future risks, needs to be explored more.
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