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ABSTRACT

In this study, a multi-time-scale four-dimensional variational data assimilation (MTS-4DVar) scheme is

developed and applied to the assimilation of radar observations. The MTS-4DVar employs multitime win-

dows with various time lengths in the framework of incremental 4DVar in the Weather Research and

Forecasting Data Assimilation (WRFDA). The objective of MTS-4DVar is to enable the 4DVar data as-

similation system to extract multiscale information from radar observations, and the algorithm of MTS-

4DVar is first discussed in detail. Using a heavy rainfall case, it is shown that the nonlinearity growth of

reflectivity is faster than that of radial velocity, suggesting that the time window for assimilating reflectivity in

the incremental 4DVar should be shorter than that of radial velocity. A series of single observation tests and

observing system simulation experiments (OSSEs) are then presented to examine the physical characteristics

and performance of MTS-4DVar. These experiments demonstrate that the MTS-4DVar is capable of com-

bining the larger-scale information from a longer timewindow and the local-scale features from a shorter time

window.With theOSSEs it is shown that the value of the cost function is reduced properly in theminimization

of the MTS-4DVar with a combination of longer and shorter time windows. By assimilating the radar radial

velocity alone, we found that the MTS-4DVar reduces the analysis and forecast errors and improves the

precipitation forecasts in comparison with the normal incremental 4DVar. Additional assimilation of

reflectivity further improved the precipitation forecasts, and the results show that the radar reflectivity can

also be well assimilated by using MTS-4DVar.

1. Introduction

Doppler radars can provide high-resolution observa-

tions both in space and time, thus they can be used to

monitor and study severe weather systems. A variety of

data assimilation methods have been developed to

assimilate radar observations to provide numerical

weather prediction (NWP) with more accurate initial

conditions [see Sun et al. (2014) and Gustafsson et al.

(2018) for review].

The three-dimensional variational data assimilation

(3DVar) technique has been widely used in radar data

assimilation due to its relatively low computational

cost and stability (Xiao et al. 2005, 2007; Pu et al. 2009;Corresponding author: Yaodeng Chen, keyu@nuist.edu.cn
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Gao and Stensrud 2012; Wang et al. 2013a; Shen et al.

2017; Liu et al. 2019). But its application on fast-evolving

convective systems is limited by its static, homogeneous

and isotropic background error covariance (BEC; Gao

and Stensrud 2014). The ensemble Kalman filter (EnKF;

Evensen 1994) method has been successfully applied

to radar assimilation in many studies because of the

flow-dependent BEC calculated from ensemble fore-

casts (e.g., Snyder and Zhang 2003; Tong and Xue

2005; Xue et al. 2006; Dowell et al. 2011). However, the

EnKF method suffers rank deficiency and sampling er-

rors from its limited ensemble sizes (Evensen 2004), and

it’s hard to properly account for the model errors, such

as the rapidly growing nonlinear errors, in computing

the BEC.

The four-dimensional variational data assimilation

(4DVar; Le Dimet and Talagrand 1986; Lewis and

Derber 1985) is another advanced technique that has

been used for radar data assimilation (Sun and Crook

1997). 4DVar uses a set of prognostic equations as a

strong constraint, or weak constraint (Trémolet 2006)

to consider model errors, to assimilate observations

at multiple times, and its BEC is implicitly flow-

dependent (Lorenc 2003; Lorenc and Rawlins 2005;

Huang et al. 2009). The 4DVar technique has been

successfully applied to the global model in the European

Centre for Medium-Range Weather Forecasts (ECMWF;

Rabier et al. 2000; Mahfouf and Rabier 2000; Klinker

et al. 2000) and several 4DVar assimilation systems have

been applied to radar assimilation, such as the varia-

tional Doppler radar analysis system (VDRAS; Sun

et al. 2010), the Japan Meteorological Agency’s meso-

scale assimilation system (Kawabata et al. 2014; Aranami

et al. 2015), the Met Office’s 4DVar (Li et al. 2018), and

the Weather Research and Forecasting (WRF) 4DVar

(Wang et al. 2013b; Sun and Wang 2013).

To reduce the computational cost and improve the

mathematical condition of the cost function, the incre-

mental method is commonly adopted in 4DVar (Courtier

et al. 1994). The incremental 4DVar uses a sequence of

tangent linear models (TLM) as approximations to the

nonlinear model as the model constraint, and the mini-

mization process of the cost function uses a strategy with

both an outer loop and an inner loop. The minimization

of the cost function is carried out in the inner loop, and

the nonlinear basic-state trajectory and the first guess

are updated in the outer loop (Zhang et al. 2014). The

TLM will differ more from the nonlinear model as

nonlinearities increase, and the nonlinearities will accel-

erate along with the time integration in 4DVar (Bonavita

et al. 2018). Ways to counteract the nonlinearity in 4DVar

are to shorten the length of the time window, to employ

more outer loops, or to gradually increase the time

windows in the outer loop (Bonavita et al. 2018; Choi

et al. 2013).

For radar reflectivity and radial velocity data assimi-

lation, the nonlinearity issue is particularly worth atten-

tion. Fabry and Sun (2010) and Fabry (2010) investigated

the nonlinearity propagation contributed from radar

reflectivity and radial velocity and found that the two

had different nonlinearity growth characteristics. Wang

et al. (2012) showed that the evolution of cloud con-

densates is more nonlinear than horizontal wind, tem-

perature, and humidity. These results suggested that the

time window for radial velocity should be longer than

that for reflectivity. A longer window can assimilate

more observations but may decrease the accuracy of the

TLM approximation, while a shorter window can have a

more accurate TLM approximation but may result in an

insufficient time for the information propagation from

observed to unobserved variables (Wang et al. 2013a).

Therefore, a question arises is how to choose the time

window in incremental 4DVar such that it can assimilate

as many observations as possible but meanwhile guar-

antee the validity of the TLM approximation in radar

data assimilation.

In this study, we propose a new scheme for effectively

assimilating radial velocity and reflectivity in an incre-

mental 4DVar framework. The scheme employs multi-

time windows with various time lengths in order to

extract multiscale information from radial velocity and

reflectivity observations, and thus it is named as multi-

time-scale 4DVar (hereafter MTS-4DVar). The per-

formance of MTS-4DVar is evaluated by a series of

observing system simulation experiments (OSSEs) for a

heavy rainfall case that occurred in northeastern China.

This article is organized as follows. In section 2, the

MTS-4DVar scheme is described. The model configu-

ration and the nonlinearity propagation evaluation for

the heavy rainfall case are given in section 3. Section 4

compares the analysis increments ofMTS-4DVar from a

single observation experiment with those from normal

4DVar experiments. In section 5, a series of OSSEs are

carried out to demonstrate the improved performance

of MTS-4DVar for radar assimilation and subsequent

short-term prediction. A summary and conclusions are

given in section 6.

2. Algorithm

a. The cost function of nonlinear 4DVar

The analysis step of 4DVarmay be seen as minimizing

a cost function that measures the misfit between obser-

vations and predictions by a nonlinear model along with

the timewindow. The cost function of 4DVar is expressed

as follows:
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The first term on the right in Eq. (1) is the background

term, and the second term is the observation term. The

vectors x0 and xb represent the initial atmospheric states

and the priori background states, respectively; the ob-

servations yo within the time window are divided into K

discrete time slots with each represented by the sub-

script k, and the observation term is the sum in all time

slots;Hk is the nonlinear observation operator at time k,

andMk is the nonlinear model operator that propagates

the initial atmospheric state to that at time k; and B and

R are the background and observation error covariance

matrices, respectively.

The length of the time window and the number of the

time slots in 4DVar are usually determined by the

available observation types. The length of these time

slots is commonly corresponding to the frequency of

observations. In each time slot, the observations are

regarded as at the same time [i.e., in the middle for most

of the time slots except for the first (last) where the

observations are at the beginning (end) of the time slot].

For example, if the observations are available every

10min and the length of the 4DVar assimilation window

is 30min, the number of the time slotsK is 4, and thus the

4 time slots are from 0 to 5, 5 to 15, 15 to 25, and 25 to

30min, and the observations in each time slot are re-

garded as at 0, 10, 20, and 30min, respectively.

b. The cost function of incremental 4DVar

Like most operational data assimilation systems, the

WRF 4DVar follows the incremental 4DVar approach

(Huang et al. 2009; Zhang et al. 2014). The incremental

approach not only reduces the computational cost but

also improves the mathematical conditioning of the cost

function due to the use of a coarser-resolution TLM and

adjoint model (ADM) with simplified representation of

physical processes.

In the incremental 4DVar, the analysis increment of

the nth outer loop is defined as the difference between

the initial state of nth outer loop and the first guess,

which is equal to the analysis state from the previous

outer loop:

dx
(n)
0 5 x

(n)
0 2 x(n)g 5 x

(n)
0 2 x

(n21)
0 . (2)

The observation departure from its observed equiva-

lence at time k is defined as the innovation:

d
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k
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k
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The nonlinear operator Hk and Mk in Eq. (1) can be

linearized into Hk and Mk with the linearization

assumption:
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Then, the cost function of the full-form 4DVar can

be rewritten to that of incremental 4DVar, after some

manipulation, as follows:
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c. The cost function of MTS-4DVar

The MTS-4DVar is designed to assimilate multiscale

information from radial velocity and reflectivity obser-

vations by using different assimilation window lengths.

In the MTS-4DVar algorithm, the interval of the ob-

servation time slots in Eqs. (1) and (5) is the same among

all outer loops, while the number of the time slots

changes with the outer loop. Longer time windows are

employed in the first several outer loops to assimilate

more observations, and then the window is shortened

from the end of the longer time window for the last

several outer loops in order to guarantee the TLM ap-

proximation for small-scale circulations, such as convec-

tive precipitation.With the multitime windows employed

in the incremental 4DVar, it is expected that the MTS-

4DVar can assimilate multiscale information from radar

radial velocity and reflectivity. Then the cost function of

the MTS-4DVar can be expressed as follows:
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(6)

Note that the fixed number of the time slotsK in Eq. (5)

becomes the changeable K(n) in Eq. (6), indicating that

the cost function of MTS-4DVar is changed when the

timewindow length is shortened. It should be noted that,

for each outer loop, the length of the integration time of

the nonlinear model is the same as that of the TLM and
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ADM to ensure the validity of the TLM and ADM ap-

proximation (see Fig. 1). When transitioning from the

longer window to the shorter window, the first guess of

the shorter window cost function is provided by the

optimized solution of the longer window in the previous

outer loop, which links the two cost function minimiza-

tion processes.

An example of MTS-4DVar with two outer loops is

illustrated in Fig. 1. A longer window is employed in the

first outer loop (top panel), which allows the assimila-

tion of observations of more time slots. In contrast, the

shorter window in the second outer loop (bottom panel)

assimilates observations of less time slots; however, it

can provide an improved tangent linear approximation

of the nonlinear trajectory because of the reduced

window length, thus allowing a better fit of the analysis

to the observations that represent the finescale struc-

ture of rapid evolving convection. It is important to note

that for each chosen window length multiple outer

loops can be executed. Figure 1 only shows one outer

loop for each window length for the purpose of easy

illustration.

The analysis from the normal incremental 4DVar is

the optimal solution over a specified time window; the

optimal analysis typically emphasizes the time scales of

the atmospheric flow that can be well simulated by the

forward model within the given time window. The

analysis process of MTS-4DVar is a series of optimal

solutions from the longer time window to the shorter

time window. When the time window is shortened,

both the observations and the nonlinear trajectory in

the later segment of the longer window do not con-

strain the solution over the shorter time window, so

the optimality with respect to the shorter time window

is emphasized in the later outer loops. Because the

optimal solution for the longer window is used as

the first guess of the shorter window optimization, the

final optimal solution is in effect an aggregation of the

two optimizations. It is anticipated that using such a

methodology in MTS-4DVar will enable the extrac-

tion of the multiscale information contained in the

observations.

3. Model configuration, rainfall case, and
nonlinearity evaluation

a. Model configuration and the rainfall case

The WRF (Skamarock et al. 2008) Model V3.9.1

is chosen as the numerical model in this study, and the

data assimilation system is based on the WRF Data

Assimilation (WRFDA) 4DVarV3.9.1. All experiments

are conducted on the same experimental domain as

shown in Fig. 2a. It has two nested domains with the

horizontal resolutions of 9 km (domain 1) and 3km

(domain 2). The number of horizontal grid points for

each domain is 361 3 301 and 421 3 361, respectively.

The number of vertical levels is 41 with the model top

at 50 hPa, and the pressure profile corresponding to

each model level is shown in Fig. 2b. The selected

physical parameterizations are WRF double-moment

6-class (WDM6) microphysics scheme (Lim and Hong

2010), the Rapid Radiative Transfer Model (RRTM)

longwave radiation scheme (Mlawer et al. 1997) and

Dudhia shortwave radiation scheme (Dudhia 1989),

the Yonsei University (YSU) planetary boundary

layer scheme (Hong et al. 2006), and the Tiedtke cumulus

parameterization scheme (Tiedtke 1989). The cumulus

scheme is only applied on the coarser grid.

The static BEC is estimated using the National

Meteorological Center (NMC) method (Parrish and

Derber 1992), which uses the differences between

24- and 12-h forecasts valid at the same time during

FIG. 1. The flowchart of the MTS-4DVar showing the first outer

loop with a 30-min 4D-Var assimilation window (top) assimilating

4 time levels of observations (OBS1–OBS4) and the second outer

loop with a reduced 20-min window (bottom) assimilating 3 time

levels of observations (OBS1–OBS3). The first guess for the first

outer loop is provided by the forecast background while the first

guess for the second outer loop is from the longer window analysis.

IV stands for innovation.
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a 1-month period (20 July–20 August 2016). The se-

lected control variables in this study are eastward and

northward velocity components (U, V), surface pressure

(Ps), temperature (T), pseudo–relative humidity (RHs),

rainwater mixing ratio (Qrain), and cloud water mixing

ration (Qcloud); U and V are selected as the momentum

control variables in order to better assimilate radar ra-

dial velocity observations, and nomultivariate operators

are considered in the background error covariance be-

cause the correlations between themomentum variables

and the other variables are insignificant at the convec-

tive scale (Sun et al. 2016).

Under the joint influence of the weakened low pres-

sure of typhoon ‘‘Haitang’’ and the subtropical high,

from 1200 UTC 2 August to 0000 UTC 5 August 2017,

the Liaoning province in northeast China was hit by

a heavy rainfall event. Among the 1612 meteorological

observation stations in the Liaoning province, 68 ob-

served daily accumulated precipitation greater than

250mm, and 296 observed daily precipitation between

100 and 250mm, and the maximum hourly accumu-

lated precipitation reached 112.5mm. In this study,

the early stage of the heavy rainfall occurred from

1800 UTC 2 August to 0000 UTC 3 August is investi-

gated. Figure 2c shows the 6-h accumulated precipita-

tion from the China Hourly Merged Precipitation

Analysis (CHMPA; Shen et al. 2014) valid at 0000UTC

3 August 2017.

b. Nonlinearity evaluation for the rainfall case

Since the motivation of the MTS-4DVar scheme is to

better assimilate observations with different nonlinear

error growth rate during model integration, here we

show an example how the model variables U/V and

Qvapor/Qrain, which are directly related to observed ra-

dial velocity or reflectivity, present different nonlinear-

ity propagation characteristics. We use the nonlinearity

index (NLI) and contradictory information index (CII)

(Fabry and Sun 2010) calculated fromWRF simulations

for such purpose. The NLI measures the magnitude of

the departure between the nonlinear and linear states

while the CII measures whether the nonlinear and linear

states are contradictory with each other, or evolve to-

ward different directions. If the forecast model is linear,

a perturbation Dx added to the model state x0 will result

in a linear response:

M(x
0
1Dx)’M(x

0
)1Dx

�
›M

›x

�
x0

.
(7)

If Eq. (7) stands, a perturbation that is a fraction l of the

original one should result in the following:

FIG. 2. (a) Experimental domain and radar locations (blue dots),

(b) vertical profiles of pressure with respect to model level, and

(c) 6-h accumulated precipitation valid at 0000 UTC 3 Aug 2017.
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M(x
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1 lDx)2M(x

0
)’ l[M(x

0
1Dx)2M(x

0
)] . (8) For each variable y, which is a subset of the model state

x, the NLI at the integration time T in the whole domain

D can be defined as

NLI(y,T,Dx)5

ð
D

j[y(x
0
1 lDx)2 y(x

0
)]2 l[y(x

0
1Dx)2 y(x

0
)]j dDð

D

jy(x
0
1 lDx)2 y(x

0
)j dD

. (9)

The two terms in the numerator of Eq. (9) can

cancel each other when the model is in its linear

stage, and NLI is near 0. If the small perturbation

in the initial fields grows significantly with the

integration time T, the first term will dominate and

the NLI will approach 1. The greater the value of

NLI is, the more nonlinear the variable y is. The CII

is defined as

CII(y,T ,Dx)5

ð
D

jsgn[y(x
0
1 lDx)2 y(x

0
)]2 sgn[y(x

0
1Dx)2 y(x

0
)]j dDð

D

jsgn[y(x
0
1 lDx)2 y(x

0
)]1 sgn[y(x
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1Dx)2 y(x
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)]j dD

, (10)

where

sgn(x)5

8<
:

1: x. 0

0: x5 0

21: x, 0

. (11)

The CII has smaller values when the nonlinear and lin-

ear states have the same signs and larger values other-

wise, and it can also measure the effect of assimilation.

The higher the value of CII is, the less effect of assimi-

lating y it will be. Similar to Fabry and Sun (2010), the

thresholds of 0.5 and 0.1 were used for NLI and CII,

respectively, to indicate high nonlinearity in this study.

The calculation of the NLI and CII are conducted as

follows. First a control run was generated by initializing

WRFat 1200UTC 2August 2017with the 0.58 3 0.58GFS

analysis. Perturbations of each variable were then added

to the 6-h forecast at 1800 UTC 2 August to create two

perturbed runs; the perturbations added by the second

run were only one-eighth of that of the first run. The 3-h

forecasts were then carried out with the perturbed ini-

tial conditions, and the results were output every 5min.

20 pairs of such perturbed runs were generated with

different perturbations added at the same time. The

outputs of the control run and each pair of the per-

turbed runs were used to calculate NLI and CII, and the

final results were then averaged over the 20 pairs of

perturbed runs.

Figure 3 shows the NLI and CII values with respect

to the integration time for U, V, Qvapor, and Qrain.

The NLIs for variables U and V cross the 0.5 threshold

in 70min in contrast to 25 and 10 for Qvapor and Qrain,

respectively. Similarly, the times taken forQvapor and

Qrain to cross the CII 5 0.1 threshold are much

shorter and as short as 5min forQrain. The evaluation

of the CII and NLI shows that the nonlinearity

propagation of the U, V fields (related to radial ve-

locity) is far slower than that of the microphysics

(related to reflectivity) and, in the same time window,

assimilating radial velocity is more effective than as-

similating reflectivity, indicating that the assimilation

time window for radial velocity can be longer than that

of reflectivity.

4. Single observation experiments

In this section, six single observation experiments,

which are three assimilating radial velocity and the other

three assimilating reflectivity, respectively, are pre-

sented to show how observation information is spread

with different time windows employed. Different from

the usual 3DVar single observation experiment that

involves only a single observation, observations from

multiple times at a single position are assimilated in

this study. Observations of radial velocity or reflectivity

at multiple times, computed relative to an assumed ra-

dar location of (41.5338N, 120.5178E), were placed at

(41.5948N, 120.0558E) on the 10th model level (2400m).

The observations are assimilated at 0, 10, 20, and 30min

of the 4DVar window. Both the innovation and the

observation error of the radial velocity are assumed

1.0m s21, and the innovation and observation error of
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reflectivity are assumed 3dBZ (equivalent to 0.01 g kg21

of rainwater). All the six experiments were conducted

with two outer loops. The normal incremental 4DVar

experiments S_RV1010 (S_RF1010) and S_RV3030

(S_RF3030) used static lengths of time window in both

outer loops, and the lengths were 10 and 30min, re-

spectively. In the MTS-4DVar experiment S_RV3010

(S_RF3010), the inner loop time windows for the two

outer loops were 30 and 10min, respectively. The details

about the time windows of the six single observation

experiments are shown in Table 1.

Figure 4 shows the wind, temperature and humid-

ity analysis increments at the 10th model level for

S_RV1010, S_RV3030, and S_RV3010 at the start of the

assimilation window. For the wind fields, S_RV1010

(Fig. 4a) has the largest increments, but the increments

are most localized among the three experiments with-

out showing any dynamical features about 200 km away

from the single observation location. The increments

of S_RV3030 (Fig. 4b) are relatively smaller, but

spread over a much larger area, indicating that rela-

tively larger-scale features are contained in the analy-

sis increments. The magnitude of the increments for

S_RV3010 (Fig. 4c) is between those of the experiments

S_RV1010 and S_RV3030, and the shape of the incre-

ments for S_RV3010 is also between those two experi-

ments. Unlike the velocity increments which are directly

contributed by the radial velocity observation, the in-

crements of temperature and humidity are obtained

only through the integrations of the TLM and ADM.

For the temperature field, the increments of S_RV1010

(Fig. 4d) are smaller and more localized due to the in-

sufficient time for the model to transfer the observed

wind information to temperature with a short time

window. S_RV3030 (Fig. 4e) has a greater and broader

increment field, but noises appear near the west

boundary that may be caused numerically. The tem-

perature increments of S_RV3010 (Fig. 4f) are stronger

than S_RV1010 and less noisy than S_RV3030. For the

analysis increments of humidity, it is evident that

the increments from S_RV3030 have the largest mag-

nitude and areal spread whereas the other two experi-

ments are similar with slightly larger increments for

S_RV3010.

The vertical sections of wind speed, temperature and

humidity analysis increments along 118.58E are shown

in Fig. 5. While the S_RV1010 experiment shows larger

wind increments in the low levels around 750 hPa

where the observation is located, its temperature and

humidity increments are much weaker than those from

S_RF3030. On the other hand, although the increments

of temperature and humidity from S_RV3030 are ob-

viously larger, the shape and magnitude of its low-level

wind increments are noticeably different from those in

S_RV1010. In comparison, moderate increments for all

three fields are produced by using the varied windows

as in S_RV3010.

Figure 6 shows the rainwater increments at the 10th

model level responding to the reflectivity assimilation.

In S_RF1010, the increments of rainwater are localized

and their maximum values are much greater than

0.0025 gkg21. The rainwater increments of S_RF3030

spread a larger area but with smaller values (above

0.002 g kg21) when compared to S_RF1010. There were

FIG. 3. (a) Nonlinearity index (NLI) and (b) contradictory in-

formation index (CII) with respect to time integral (min) for U, V,

Qvapor, and Qrain.
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negative increments near the single observation site in

S_RF3030, and the negative increments are between

two maximums of rainwater in the background where

the increments are positive. Therefore, the negative in-

crements in S_RF3030 is unreasonable, and it may be

caused by the nonlinearity in the longer assimilation

window. The increments of S_RF3010 are similar with

that of S_RF1010 but with relatively smaller values

(about 0.0025 g kg21), and the negative increments in

S_RF3030 are not found in S_RF3010. Compared with

those from the S_RV experiments, the increments for

temperature and humidity are rather small (not shown),

implying that reflectivity (or hydrometeors) is less cou-

pled with other fields.

The single observation experiments indicate that the

longer 4DVar window produces longer-range incre-

ments that may represent relatively larger-scale mo-

tions, while the shorter window attains strong wind

increments close to the observation. A longer time

window is necessary to ensure sufficient time to

transfer information from observation to unobserved

model variables through model dynamics. A longer

time window in reflectivity assimilation may bring neg-

ative effects likely due to larger nonlinear error growth,

FIG. 4. Wind vectors and speed (vector and shaded, m s21), temperature (shaded, K), and water vapor mixing ratio (shaded, g kg21)

analysis increments in response to radial velocity assimilation for S_RV1010, S_RV3030, and S_RV3010.

TABLE 1. Time window of the single observation experiments.

Experiments Time window Observation

S_RV1010 10min for both two outer loops Radial velocity

S_RV3030 30min for both two outer loops Radial velocity

S_RV3010 30min for the first outer loop and 10min for the second outer loop Radial velocity

S_RF1010 10min for both two outer loops Reflectivity

S_RF3030 30min for both two outer loops Reflectivity

S_RF3010 30min for the first outer loop and 10min for the second outer loop Reflectivity
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and it can be avoided by using either a shorter time

window or multitime windows. In the next section,

we will show that the MTS-4DVar can improve ana-

lyses by combining multiscale information contained in

observations.

5. Observing system simulation experiments

In this section, the OSSEs are carried out to investi-

gate the capability of MTS-4DVar in radar radial ve-

locity and reflectivity assimilation.

a. Truth simulation and simulated radar observation

The truth simulation was generated using a similar

procedure described by Zhang et al. (2015). The initial

and lateral boundary conditions were provided by the

0.58 3 0.58 GFS analysis with random errors added

at 0600 UTC 2 August 2017. Then the forecast fields

from 1800 UTC 2 August to 0000 UTC 3 August 2017,

which have good precipitation forecasts, were selected

as the truth simulation. The background fields were

provided by the 6-h forecast, which was initialized at

1200 UTC 2 August using the 0.58 3 0.58GFS analysis.

The 4DVar data assimilation starts at 1800 UTC

2 August 2017 to initialize simulations that end at

0000 UTC 3 August 2017.

The synthetic radar radial velocity and reflectivity

observations were then created from the truth simula-

tion for the 15 radars shown in Fig. 2a. First the

observation grid was generated for each radar with

FIG. 5. Vertical sections along 118.58E of analysis increments for wind speed (m s21), temperature (K), and water vapor mixing ratio

(g kg21) in response to radial velocity assimilation for S_RV1010, S_RV3030, and S_RV3010.
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9 elevations angles (0.58, 1.58, 2.48, 3.48, 4.38, 6.08, 9.98,
14.68, and 19.58), 3-km range bins up to 240 km, and

an azimuthal spacing of 48. Then radar radial velocity

and reflectivity values at model grid points were cal-

culated from the truth simulation using the radar ob-

servation operators (Xiao et al. 2005; Gao and Stensrud

2012) and then interpolated to the observation grid

points. The Gaussian errors with zero mean and a

standard deviation of 1m s21 and 3 dBZ were added

to the synthetic radial velocity and reflectivity, re-

spectively. Considering that errors were introduced

in interpolation, the observation errors of radial ve-

locity and reflectivity were inflated to 1.5 m s21

and 5 dBZ.

b. Experimental design

To evaluate the performance of MTS-4DVar on

assimilating radial velocity and reflectivity observa-

tions, a series of experiments were conducted as

summarized in Table 2. The control experiment,

CNTL, was initialized from the background fields

whereas the other five experiments assimilated either

radar radial velocity only (V1212, V3030, and V3012)

or both radial velocity and reflectivity (VF3012 and

VF3012A). For all the 4DVar assimilation experi-

ments, two outer loops were employed and 30 itera-

tions were carried out for each outer loop. The length

of the time window for the first (second) outer loop

was indicated by the first (second) two digits follow-

ing V for radial velocity or VF for radial velocity and

reflectivity. VF3012A differs from VF3012 in that

only 12min reflectivity observations were used in

VF3012A; that is, the observations from 13 to 30min

were withheld to avoid the nonlinearity of reflectivity,

which was discussed in section 3b. The assimilation of

reflectivity used an indirect scheme that assimilated re-

trieved rainwater and water vapor estimated from radar

reflectivity (Wang et al. 2013a). The latter simply as-

sumes water vapor saturation of 100%, 95%, and 85%

for reflectivity above 50dBZ, within 40–50dBZ, and

within 25–40 dBZ, respectively. In this study, the spatial

resolution of the TLM and ADM is the same as that of

the nonlinear model.

c. Assimilating radial velocity alone

1) MINIMIZATION OF THE COST FUNCTION AND

INITIAL STATE BALANCE

The cost function and its gradient are discussed to

examine whether the MTS-4DVar has a stable behavior

in the cost function minimization. The reduction on the

cost function and its gradient are shown in Figs. 7a and

7b, respectively. with respect to the 62 iterations (30 in-

ner loop iterations as well as the initial one for each of

the 2 outer loops). In the first outer loop, it is obviously

that the shorter time window experiment V1212 has

good convergence with a steady reduction on both the

cost function and its gradient. A steady reduction on

the cost function can be seen in both V3012 and V3030,

but quite large gradients are shown during the first

several iterations. The second outer loop witnesses a

FIG. 6. Rainwater mixing ratio (shaded, g kg21) analysis incre-

ments in response to radar reflectivity assimilation for S_RF1010,

S_RF3030, and S_RF3010. The gray lines are the background

rainwater mixing ratio.
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slight jump in cost functions for V1212 and V3030 be-

cause of the updates of the dk respect to Hk, Mk, and

of the first guess xo in Eq. (3). V3012 experiences a

sharp reduction on cost function in the second outer

loop due to a reduction on the number of observations

associated with the shorter time window. Both V1212

and V3012 have good convergence in the second outer

loop, but the cost function of V3030 is nearly flat for the

longer time window employed. The results indicate that

the MTS-4DVar minimization behaves properly and

TABLE 2. Summary of the six experiments.

Experiments Time windows Observation

CNTL No radar observations are assimilated

V1212 12min for both two outer loops Radial velocity

V3030 30min for both two outer loops Radial velocity

V3012 30min for the first outer loop and 12min for the second outer loop Radial velocity

VF3012 30min for the first outer loop and 12min for the second outer loop Radial velocity and reflectivity

VF3012A 30min for the first outer loop and 12min for the second outer loop Radial velocity and 12min reflectivity

FIG. 7. (a) The cost function, (b) the gradient of cost function with respect to the number of iterations accu-

mulated by two outer loops, and (c) the 6-h evolutions of the mean absolute second time derivative of surface

pressure for V1212, V3030, and V3012. In (a) and (b), the first 31 iterations (30 inner iterations and the initial one)

to the left of the dotted line are in the first outer loop, while the rest 31 iterations in the second outer loop.
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avoids the unstable minimization from the longer time

window in the second outer loop.

To evaluate the initial imbalance characteristics in

short-term forecasts based on the analysis from V1212,

V3030, and V3012, the mean absolute second derivative

of surface pressure (Houtekamer and Mitchell 2005)

was calculated. The mean absolute second derivative of

surface pressure is defined as

Ps_2nd5
1

N
x
3N

y

�
Ny

1
�
Nx

1

jp
s
(t1Dt)2 2p

s
(t)1 p

s
(t2Dt)j ,

(12)

where ps is the surface pressure (hPa);Nx andNy are the

numbers of horizontal grids, and they are 420 and 360,

respectively;Dt is the time step inmodel integration, and

it is 15 s. Ps_2nd reflects the overall balance of the model

state. The balance of forecasts measured by Ps_2nd

starting form 1800 UTC in the 3-h forecasts is presented

in Fig. 7c. In the first hour, the second derivative of

surface pressure of the three experiments is reduced

from more than 0.12 to about 0.025hPa, and the values

are stabilized afterward. V1212 is the most imbalanced

among the three experiments, which is not surprising

because it misses certain larger-scale and multivariate

information by using a smaller window. The use of a

longer time window gives the 4DVar sufficient time to

propagate the radial wind information to the other

variables, thus V3030 is the least unbalanced. By using

both the longer and shorter windows the imbalance in

V3012 is slightly reduced from that of V1212 in the

first 60min.

Since in the MTS-4DVar experiment V3012 the ob-

servations in the later time slots in the first outer loop no

longer constrain the minimization in the second outer

loop, a question arises whether that will cause the so-

lution of the cost function moving back to the back-

ground. To answer that question, we compare the

Observations minus Analysis (OmA) and Analysis mi-

nus Background (AmB) over the first 12-min window

and Observations minus Forecasts (OmF) over the rest

18-min window for radial velocity from the second outer

loop with their respective counterparts from the first

outer loop. In Fig. 8, the vertical distributions of the

root-mean-square errors (RMSEs) of AmB, OmA, and

OmF from the two outer loops are compared. The

comparison clearly shows that OmA and OmF from the

second outer loop is smaller than that from the first outer

loop and vice versa for AmB. Apparently, the second

outer loop increases the RMSE of AmB and decreases

that of OmA, meaning that the minimization solution

of the MTS-4DVar experiment in the second outer

loop has moved away from the background but toward

the observations over the shorter time window. The

RMSE of OmF over the later 18-min window is also

decreased in the second outer loop, meaning that the

improved analysis over the shorter timewindow can also

lead to an improvement of the forecast trajectory over

the longer window.

2) ANALYSIS

We first examine the differences in the analysis in-

crements among the experiments and the results from

the forecasts will be compared in section 5c(3). Figure 9

FIG. 8. Vertical profiles of RMSE of the (a) OmA and (b) AmB over the first 12-min window and (c) OmF over the rest 18-min window

for radial velocity from the first and second outer loop in V3012.
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shows the horizontal increments of wind fields at

model level 15 (about 500 hPa). We first notice that the

increments of V3030 (Fig. 9c) are smoother and weaker,

missing many small-scale features present in the truth

run (Fig. 9a, between 1178 and 1218E) that are caused by

the convective system (Fig. 2c), although the large-scale

pattern (convective environment) is adequately cap-

tured. In comparison, the increments of V1212 (Fig. 9b)

and V3012 (Fig. 9d) not only capture the large-scale

pattern as in Fig. 9c but also add most of the small-scale

details associated with the convection. As will be seen

next, the main differences between V3012 and V1212

are further revealed in the temperature and water vapor

analyses.

The vertical cross sections of the temperature and

water vapor increments along 118.58E are shown in

Fig. 10. For the temperature fields, the main pattern of

the negative differences in the lower levels and positive

differences in the middle and upper levels between the

truth simulation and the first guess (Fig. 10a) is captured

by all the three assimilation experiments. V1212 misses

the negative region on the middle levels near 39.58N,

while both V3012 and V3030 successfully capture it. For

the water vapor fields, the increments of V1212 are al-

most all negative, while V3012 and V3030 successfully

analyze the positive patterns in lower and middle levels

near 37.58N.

The analysis increments shown above suggest that the

MTS-4DVar is able to capture the larger-scale and

localized dynamical information with a combination

of longer and shorter time windows. The results also

indicate that the shorter window data assimilation en-

suing the longer window in MTS_4DVar does not cause

any degradation of the temperature and humidity ana-

lyses of those obtained from the longer window alone

(V3030); or in other words the information gained from

the longer window assimilation is well maintained dur-

ing the successive shorter window assimilations. Next,

we will compare these experiments with quantitative

verification against the truth simulation to further eval-

uate the benefit of MTS-4DVar.

Figure 11 displays the vertical profiles of RMSE be-

tween the analysis and the truth simulation. The analy-

sis errors are obviously reduced after the 4DVar

FIG. 9. The U, V winds (vectors; m s21) and speed (shaded; m s21) at the 15th model level for (a) TRUTH minus

background, and analysis increments of (b) V1212, (c) V3030, and (d) V3012.
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assimilation of radial velocity. For variables U and V,

the experiment V1212 has the least errors and V3030

has the largest errors among the three assimilation

experiments, and the errors of the experiment V3012

are between those two. For variable T, the experiment

V3012 has the least errors below 500 hPa except for

the levels near 700 hPa, while V1212 performs the

worst below 850 hPa. For the humidity variableQ, the

result of V3012 is similar to V3030, and V1212 even

performs worse than CNTL. The better results pro-

duced by the experiments V3030 and V3012 are at-

tributed to the use of the 30min window, which enables

the wind increments to be transferred to those of tem-

perature and humidity through the longer forward model

integration.

3) FORECAST

The quantitative precipitation forecast (QPF) is a

vital indicator for evaluating the performance of

assimilation and forecasting. Figure 12 presents the 6-h

accumulative precipitation initialized from 1800 UTC

2 August for TRUTH, CNTL, V1212, V3030, and V3012.

Twomain precipitationmaxima are simulated by the truth

simulation, which are represented by areas A and B in

Fig. 12a. The CNTL (Fig. 12b) fails to simulate the pre-

cipitation in area B and overestimated the intensity in area

A, but the situation is greatly improved after the assimi-

lation of radial velocity using 4DVar. V1212 (Fig. 12c)

slightly improves the precipitation in area B, but it signif-

icantly underestimates precipitation in area A. V3030

(Fig. 12d) overestimates the precipitation in area A, but

FIG. 10. The vertical sections of temperature (line; K) and water vapor mixing ratio (shaded; g kg21) along 118.58E
for (a) TRUTH minus background, and analysis increments of (b) V1212, (c) V3030, and (d) V3012.

2076 MONTHLY WEATHER REV IEW VOLUME 148

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/148/5/2063/4927884/m
w

rd190203.pdf by guest on 22 June 2020



the precipitation in area B is largely underestimated;

V3012 (Fig. 12e) also underestimates the precipitation in

area B, but it has the best precipitation forecasts in areaA.

To quantitatively evaluate the precipitation forecasts

of each experiments, the fractions skill score (FSS,

Roberts and Lean 2008) with the radius of influence

of 6 km, are computed. The results of FSSs of 6-h ac-

cumulated precipitation valid at 0000 UTC 3 August

for CNTL, V1212, V3030, and V3012 with different

thresholds are shown in Fig. 13. The score of V3012 is

the highest, and that of CNTL is the lowest. V3030

outperforms V1212 in the thresholds between 25 and

60mm while V1212 does better in the other three sets

of thresholds. Figure 14 displays the hourly accumu-

lated precipitation FSSs with respect to 6-h forecast

time with different sets of thresholds. In thresholds be-

tween 0.1 and 1.5mm, the results of FSSs are mixed,

but the FSSs of V1212 are slightly higher than those

of the other three experiments. The FSSs of V3012

are the largest in thresholds between 1.5 and 7, 7 and 15,

and 15 and 40mm at almost all forecast hours. V1212

outperforms V3030 at the first two or three forecast

hours, but they are reversed afterward. The results of

the precipitation forecasts indicate that theMTS-4DVar

can effectively improve the 0–6-h QPF using two dif-

ferent window lengths for radial velocity assimilation.

FIG. 11. Vertical profiles of RMSE of the analysis against the truth simulation for (a) U, (b) V, (c) T, and (d) Q of

CNTL, V1212, V3030, and V3012.
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The vertical profiles of RMSEs for 6-h forecasts

against truth simulation are shown in Fig. 15. V3012

has the least RMSE values for wind variables U and V

above 700 hPa, and even V3030 outperforms V1212 in

wind fields. For temperature, the errors of V3012 and

V3030 are similar in the levels between 400 and 850hPa,

and V1212 has the largest errors above 850 hPa while

V3030 has the largest errors below 850hPa. The forecast

errors for Q of V3012 and V3030 are similar, and they

are all less than that of V1212. Even though V1212 has

least analysis errors in wind fields, the superiorities de-

crease quickly as the forecast time increases. It may

be explained by that the imbalance between analysis

variables in V1212 brings negative impacts to forecasts.

Benefiting from the larger-scale information from the

longer time window and localized information from the

shorter window in wind fields and balanced analysis

among the observed and unobserved variables, V3012

has the least RMSEs of the 6-h forecasts almost for all

variables among the three experiments, and it may ex-

plain why the precipitation forecast is well improved

by V3012.

d. Assimilating both radial velocity and reflectivity

Previous studies have shown that the radar observa-

tions will be efficiently utilized when radial velocity and

reflectivity are assimilated simultaneously (Tong and

Xue 2005; Kawabata et al. 2011; Gao and Stensrud

2014). In this subsection, we will focus on the application

of MTS-4DVar for the assimilation of both radial

velocity and reflectivity. Since it was shown that the

V3012 had certain superiority over V1212 and V3030,

we added two experiments to assimilate radial

FIG. 12. The 6-h accumulated precipitation (mm) initialized from 1800UTC 2Aug 2017 for (a) TRUTH, (b) CNTL, (c) V1212, (d) V3030,

and (e)V3012.

FIG. 13. The FSSs of 6-h accumulated precipitation with different

thresholds for CNTL, V1212, V3030, and V3012.
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velocity and reflectivity simultaneously: VF3012

and VF3012A. In the following we will compare

these three experiments.

1) VERIFICATION OF STATE VARIABLES

Figure 16 shows the vertical profiles of RMSEs of the

analysis against the truth simulation for U, V, T, and

Q. The analysis errors of U, V for the three assimila-

tion experiments are similar, and V3012 has smaller

errors of U and V in the middle levels and VF3012A

has smaller errors of V below 850hPa. The analysis er-

rors of T for V3012 are least below 500hPa, and VF3012

has smaller errors of T than that of VF3012A below

850hPa. The analysis errors of Q are reduced when the

estimated water vapor from reflectivity observations

are assimilated, and VF3012 has the least errors with

VF3012A second to it. The vertical profiles of RMSEs

for the 6-h forecasts are shown in Fig. 17. The forecast

errors of U and V for VF3012A are the least among the

three experiments in the levels above 600hPa, and

VF3012 has the least forecast errors of U and V in the

levels below 600hPa. For the variable T below 400hPa,

VF3012 has the least forecast errors, and VF3012A is

second to it. For the variable Q, VF3012 and VF3012A

have similar forecast errors, and they both outperform

V3012 due to the assimilation of reflectivity.

2) QUANTITATIVE PRECIPITATION FORECAST

Figure 18 shows the 6-h accumulated precipitation

forecasts of the TRUTH, V3012, VF3012A, and VF3012.

With the additional reflectivity assimilated, both of

VF3012A and VF3012 improve the precipitation simu-

lation in area B where V3012 only predicts scattered

precipitation. VF3012 slightly outperforms VF3012A

in area C where the latter overestimates the precipita-

tion. The results of FSSs of 6-h accumulated precipita-

tion for V3012, VF3012A, and VF3012 are shown in

Fig. 19. After the reflectivity is assimilated with MTS-

4DVar, the precipitation scores of VF3012A and VF3012

are higher than that of V3012 for almost all thresholds,

andVF3012 has relatively greater values thanVF3012A.

The shorter time window employed in the second outer

loop in VF3012 can reduce the nonlinearity of radar

reflectivity assimilation, and it may explain why there

FIG. 14. The FSSs of hourly precipitation with thresholds of (a) 0.1–1.5, (b) 1.5–7, (c) 7–15, and (d) 15–40mm for

experiments CNTL, V1212, V3030, and V3012.
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is no advantage in withholding the reflectivity data in

later time levels in the longer window assimilation in

MTS-4DVar.

6. Conclusions

To assimilate multiscale information from observa-

tions at multiple times, an MTS-4DVar scheme was

developed. The MTS-4DVar employed multitime

windows in the framework of incremental WRFDA

4DVar, with longer windows employed in the first

several outer loops to assimilate relatively larger-scale

information and shorter windows in the last several

outer loops to assimilate more localized features from

observations. To evaluate the application of the MTS-

4DVar on radar data assimilation, a series of single

observation tests and OSSEs with multitime windows

by assimilating simulated radial velocity and reflectiv-

ity were carried out.

The detailed descriptions of the algorithm of MTS-

4DVar are first discussed. The optimal analysis of

4DVar typically emphasizes the time scales of the

atmosphere that is simulated by the forward model

within the given time window. The analysis process

of MTS-4DVar is a series of optimal solutions from

the longer time window to the shorter window. With

the first guess from the previous longer-window so-

lution and the improved linearization trajectory in

FIG. 15. As in Fig. 10, but for the 6-h forecast.

2080 MONTHLY WEATHER REV IEW VOLUME 148

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/148/5/2063/4927884/m
w

rd190203.pdf by guest on 22 June 2020



the successive shorter-window outer loop, it is an-

ticipated that the multiscale information from ob-

servations can be extracted in the optimal analysis

of MTS-4DVar. The nonlinearity propagation of

variables related to radial velocity and reflectivity

were then diagnosed using the NLI and CII. It was

shown that the nonlinearity growth of reflectivity is

faster than that of radial velocity, indicating that

the time window of assimilating reflectivity should

be shorter.

Single radial velocity and reflectivity observation as-

similation experiments were carried out to show how

the wind information was spread spatially and

propagated to other variables with multitime win-

dows employed in incremental 4DVar. The results

showed that the longer time window in 4DVar

produced longer-range increments that might repre-

sent larger-scale motions, while the shorter 4DVar

window contained more localized features. The

MTS-4DVar produced a reasonable combination of

the larger-scale information and the localized fea-

tures in wind increments with multitime windows

employed. The longer window employed in 4DVar

ensured sufficient time to transfer radial velocity

information to temperature and humidity variables,

but it may bring negative impacts to the analysis

FIG. 16. Vertical profiles of RMSE of the analysis against the truth simulation for (a) U, (b) V, (c) T, and (d) Q of

V3012, VF3012A, and VF3012.
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when the reflectivity observations are assimilated,

likely due to the rapid nonlinear growth of hydro-

meteor variables.

The capability of the MTS-4DVar in radar assimi-

lation were further evaluated by conducting OSSEs.

The results of the minimization showed that the cost

functions of MTS-4DVar were reduced properly with

the iterative updates of the basic states, and the shorter

windowhelped theMTS-4DVar convergewell. Benefited

from the multitime windows employed in MTS-4DVar,

the multiscale dynamic features were well combined in

the wind increments. The use of a longer window

allowed 4D-Var to attain better multivariate analyses of

temperature and humidity fields, and these analyses

were well maintained during the shorter window as-

similation in the second outer loop inMTS-4DVar.With

the improved analysis fields in MTS-4DVar, the inten-

sity and location of the 6-h accumulated precipitation

were well improved, and the forecast errors were re-

duced for the velocity, temperature, and humidity

fields. The results of the simultaneous assimilation

of radial velocity and reflectivity using MTS-4DVar

showed that the added reflectivity observations fur-

ther improved the humidity analysis and thus the

forecasts of model state variables, resulting in im-

proved precipitation forecasts. Results also showed

that there are no clear advantages in withholding

the reflectivity data in later time levels in the longer

FIG. 17. As in Fig. 14, but for 6-h forecasts.
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window assimilation in MTS-4DVar, meaning that

the MTS-4DVar can be well applied to reflectivity

assimilation.

Both the single observation assimilation experiments

and the OSSEs show that the MTS-4DVar had the ca-

pability to assimilate multiscale information from

radar radial velocity and reflectivity observations.

Due to the limit of computation cost, the MTS-4DVar

was only evaluated with OSSEs for a rainfall case, and

further study will focus on the applicability of the

MTS_4DVar to real data assimilation with cycling

configurations. In addition to the assimilation of ra-

dial velocity and reflectivity, the MTS-4DVar can also

be applied to the assimilation of observations with

high temporal and spatial resolution, such as the new-

generation geostationary satellite radiances (Wang

et al. 2018), the dual-polarization radar observations

(Kawabata et al. 2018). Moreover, while the longer

window used in the first outer loop is only 30min in the

current study in order to effectively extract information

from radar observations, a much larger window length

can be applied to infer synoptic-scale information from

FIG. 18. The 6-h accumulated precipitation (mm) initialized from 1800 UTC 2 Aug 2017 for (a) TRUE, (b) V3012

(c) VF3012A, and (d) VF3012.

FIG. 19. The FSSs of 6-h accumulated precipitation with different

thresholds for V3012, VF3012A, and VF3012.
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conventional observations. These ideas will be explored

in future work.
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