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ABSTRACT

A probability matching (PM) product using the ensemble maximum (EnMax) as the basis for spatial

reassignment was developed. This PM product was called the PMmax and its localized version was called the

local PM (LPM) max. Both products were generated from a 10-member ensemble with 3-km horizontal grid

spacing and evaluated over 364 36-h forecasts in terms of the fractions skill score. Performances of the PM

max and LPMmax were compared to those of the traditional PMmean and LPMmean, which both used the

ensemble mean (EnMean) as the basis for spatial reassignment. Compared to observations, the PM max

typically outperformed the PMmean for precipitation rates$5mmh21; this improvement was related to the

EnMax, which had better spatial placement than theEnMean for heavy precipitation.However, the PMmean

produced better forecasts than the PM max for lighter precipitation. It appears that the global reassignment

used to produce the PM max was responsible for its poorer performance relative to the PM mean at light

precipitation rates, as the LPM max was more skillful than the LPM mean at all thresholds. These results

suggest promise for PM products based on the EnMax, especially for rare events and ensembles with

insufficient spread.

1. Introduction

Ensemble quantitative precipitation forecasts (QPFs)

quantify forecast uncertainties in numerical weather

prediction (Seo et al. 2000; Mullen and Buizza 2001;

Krajewski and Ciach 2003; Ciach et al. 2007) but often

generate tens of ensemble members, which complicates

the interpretation of ensemble forecasts. Moreover,

there is difficulty in properly conveying prediction un-

certainty and transitioning probabilistic guidance into

risk management (Ancell 2013). It is also difficult for

end-users unfamiliar with ensemble forecast informa-

tion to ingest probabilistic guidance into their specific

applications (Yang et al. 2019). Therefore, it is worth

designing deterministic products that gather informa-

tion across all ensemble members for end-users.

A simple approach is to compute the ensemble mean

(EnMean) (Leith 1974; Murphy 1988; Du et al. 1997;

Speer and Leslie 1997), where the amount of precipita-

tion at each grid point is the average of all members.

This average highlights the common features of indi-

vidual members but heavily dampens the highest in-

tensities (Warner 2010). Furthermore, many studies

have shown that the EnMean substantially underes-

timates observed heavy precipitation and increases the

spatial coverage of light rainfall (Ebert 2001; Clark et al.

2008; Fang and Kuo 2013; Schwartz et al. 2014; Surcel

et al. 2014; Hamill et al. 2017).

To overcome deficiencies of the EnMean, a proba-

bility matching (PM) method was proposed that blendsCorresponding author: Shizhang Wang, szwang@nuist.edu.cn
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one type of data that provides a better spatial repre-

sentation with another type of data that has a greater

accuracy of frequency distribution (Rosenfeld et al.

1993; Anagnostou et al. 1999). This technique was first

applied to the EnMean in producing ensemble-based

QPF products by Ebert (2001), who hypothesized that

the most likely spatial placement of rainfall was given by

the EnMean and the best probability density function

(PDF) of precipitation rates was from individual en-

semble members. Thus, Ebert (2001) introduced the

‘‘probability matched mean’’ (hereafter ‘‘PM mean’’), a

deterministic product where the EnMean precipitation

is replaced by precipitation values from individual mem-

bers through a spatial reassignment process based on the

EnMean. The PM mean has been widely employed to

produce ensemble-based QPF guidance (Clark et al. 2009,

2012;Novak et al. 2014;Huang andLuo 2017;Gowan et al.

2018) and has better average performance than individual

ensemble members and the EnMean (e.g., Clark et al.

2009; Kong et al. 2009; Xue et al. 2011; Berenguer et al.

2012; Schwartz et al. 2014; Zhang 2018).

Traditionally, the PM mean has been computed by

allowing all points in the computational domain to

participate in reassignment, meaning gridpoint values

from individual members could ultimately be reassigned

to very different geographic locations in the PM mean.

However, recently, this approach has been questioned

because of concerns that incorporating spatially distant

information within the PM mean may be inappropriate.

For example, for a given grid point, Potvin et al. (2017)

only allowed points within a 10-km radius to participate

in reassignment and found this neighborhood PM mean

was more representative of the ensemble than the tra-

ditional global approach. Clark (2017) also found similar

issues when the PM mean was calculated over a large

region, which risks assigning values to a completely

different geographic or climatological area or mesoscale

environment, leading to a failure of the PM mean to

locally represent the ensemble members. Thus, Clark

(2017) proposed the localized PM mean (LPM mean),

which only allows points within a certain distance of

each grid point to contribute to reassignment. Considering

the steep computational cost of Clark (2017)’s point-by-

point LPM mean algorithm, Snook et al. (2019) proposed

an efficient ‘‘patchwise LPM mean’’ method, which ap-

plied the PM mean over a set of nonoverlapping local

patches. Another development branch of the PM mean

method was to linearly combine the PM mean and en-

semble 90th percentile weighted by their precipitation

amounts (Zhang 2018).

Despite the successful application and development

of the PMmean at convection-allowing scales, using the

EnMean as the basis for spatial placement sometimes

degraded performance of the PM mean. For example,

Fang and Kuo (2013) showed that the PMmeanmay not

be suitable for situations where rainfall spatial distri-

butions are strongly influenced by topography. In addi-

tion, Surcel et al. (2014) determined that the PM mean

had better skill than individual ensemble members be-

cause of reduced small-scale variability, as the EnMean

and PM mean are smoother than individual members

and thus filter out unpredictable small-scale informa-

tion. Furthermore, Hamill et al. (2017) demonstrated

that the diversity of ensemble positions could cause

EnMean precipitation distributions to differ from the

members, an undesirable situation. More broadly,

EnMean precipitation fields depart from the model

‘‘attractor’’ (Ancell 2013; Schwartz et al. 2014) and

may not always be the best representation of precip-

itation placement, especially for intense, localized

phenomena like convection.

Consequently, this work considers whether a different

field may better represent precipitation placement than

theEnMean for PMpurposes. Specifically, the ensemble

maximum (EnMax) was selected as the basis for reas-

signment. Unlike the EnMean, which emphasizes agree-

ment of ensemblemembers, the EnMax retains gridpoint

maximum precipitation no matter the agreement among

members, and thus depicts more small-scale precipitation

variability. This characteristic of the EnMax avoids the

overly smooth issue of the EnMean (Ancell 2013; Hollan

and Ancell 2015). In addition, the EnMax can better

capture extreme events and provides information about

forecast ‘‘upper bounds’’ that can be informative for

forecasters (Evans et al. 2014). Furthermore, while the

EnMean emphasizes ensemble consensus and deem-

phasizes uncertainty, the EnMax reflects the diversity of

ensemble members’ rainfall, implicitly retaining infor-

mation about uncertainty, which may be beneficial for an

ensemble with insufficient spread. However, whether

using the EnMax to perform reassignment increases the

ability of a PM product to capture high-magnitude events

is unknown and will be investigated in this study.

Therefore, this work investigated whether using the

EnMax as the basis for spatial reassignment to produce a

‘‘probability matchedmaximum’’ (hereafter, ‘‘PMmax’’)

product can improve upon the PM mean. Additionally,

since the LPM mean was reported to be better than the

PMmean (Clark 2017), this work examines performances

of the localized PMmax (LPMmax) and the LPMmean

to determine whether using the EnMax can result in

better forecast skill than the EnMean when the localized

approach is adopted.

The methodology and data are described in sections 2

and 3, respectively, and characteristics of the EnMax

and EnMean are discussed in section 4. PM and LPM
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products are presented and verified in section 5 before

concluding in section 6.

2. Methodology

The PM and LPMmethods are briefly reviewed using

the EnMean as an example; the corresponding EnMax

product can be obtained by substituting the EnMax for

EnMean. The EnMean and EnMax are determined by

the average and maximum values of N ensemble mem-

bers at each grid point, respectively.

a. The PM method

To provide a more realistic precipitation forecast than

the EnMean, the PM mean combines the precipitation

spatial distribution from the EnMean with the precipi-

tation frequency distribution from the ensemble mem-

bers (Ebert 2001). The procedure for obtaining the PM

mean is summarized as follows:

1) Compute the EnMean at each ofM grid points within

the entire forecast domain;

2) Sort theM precipitation amounts of theEnMean from

lowest to highest and store their ranks and corre-

sponding gridpoint locations (i, j) in the array Rmean;

3) Order the precipitation amounts of all N ensemble

members for all grid points from lowest to highest

and store every Nth value in the array Rmem;

4) Assign the mth (m is from 1 to M) value of Rmem

to themth (i, j) ofRmean (e.g., assign the locationwith

the highest EnMean amount the highest value from

the ensemble distribution). For any nonprecipitation

grid points in the EnMean, the corresponding points

in the PM mean are forced to zero.

This procedure can be applied to produce the PM max

by replacing the EnMean in the above steps with the

EnMax. Note that the EnMean, EnMax, PM mean, and

PM max all have identical nonzero precipitation areas.

b. The localized PM method

TheLPMmean (Clark 2017) is amodification of the PM

mean that only allows points within a local neighborhood

to participate in assigning a value at the mth point, con-

trasting the PM mean and PM max, which allow values

from all points in the computational domain to potentially

be reassigned to themth point. The calculation of the LPM

mean following Clark (2017) is summarized as follows:

1) Produce the EnMean as in the first step to produce

the PM mean

2) For the mth grid point, sort the EnMean values from

lowest to highest within a patch whose center is at the

mth grid point, and store the rank Rmean of the center

grid point (e.g., for a patch encompassing 100 points,

Rmean 5 90 means the value at the center grid point is

greater than thevalues at 90otherpointswithin thepatch)

3) Sort the values of allN ensemblemembers from lowest

to highest for grid points within the above patch

4) Replace the precipitation value at themth grid point

with the ensemble member value whose rank in the

ensemble is Rens. Rens is calculated as

Rens 5 nint

2
42NL(L2Rmean)

s

Ls

3
51NL , (1)

where L is the number of grid points within the patch,

and s 5 1.05 is a coefficient that determines the devia-

tion of Rens from the simple linear rank. As with the

traditional (unlocalized) PMmean, if the EnMean at the

mth point is zero, the LPMmean is forced to zero at that

point. According to Clark (2017), the expression in the

function nint[ ] can be regarded as a normalized expo-

nential, ‘‘where the exponential term Rs
mean is normal-

ized byL/Ls [and] the function is ‘flipped’ [by taking the

negative (i.e., the 2N term)] and ‘reversed’ by using

(N 2 Rmean)
s instead of Rs

mean.’’ The introduction of

s was based on the finding that there were low biases

when the linear calculation Rens 5 NRmean was used.

Steps 2 to 4 are conducted for every grid point in the

computational domain, and theLPMmax canbeproduced

by substituting the EnMax for the EnMean in the first two

steps. The optimal value for s was given by Clark (2017).

To generate LPM products, the patch radius in step 2

has to be prescribed. In the case of the patch radius

approaching zero, both the LPM max and LPM mean

converge to the EnMax. In contrast, when the radius is

sufficiently large, the LPM max is more like the PM max

and theLPMmean ismore like the PMmean. Considering

the above circumstances, the radius cannot be too large or

too small, and we used a radius of 120km, close to the

optimal value obtained by Clark (2017).

To ensure the radius of 120km was computationally af-

fordable, we examined the computational cost to produce

the LPM and PM products. In general, implementations of

the PM and LPM approaches in this work have computa-

tional efficiencies comparable to Clark (2017). However,

the actual time to produce PM and LPMproducts depends

both on the programming language used to code the al-

gorithm and other computational choices.

3. Data and metrics

a. Observation data

We produced PM and LPM products from hourly

accumulated precipitation forecasts provided by the
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National Center for Atmospheric Research (NCAR)

convection-allowing ensemble (Schwartz et al. 2015,

2019). The ensemble forecasts had 10 members with 3-

km horizontal grid spacing spanning the entire conter-

minous United States (CONUS), were integrated to

48 h, and were initialized at 0000 UTC from a continu-

ously cycling, 80-member, 15-km ensemble adjustment

Kalman filter (Anderson 2001, 2003) data assimilation

system. All 3-km ensemble members used version 3.6.1

of the Advanced Research version of the Weather

Research andForecastingModel (WRF-ARW;Skamarock

et al. 2008; Powers et al. 2017) and had common physical

parameterizations. No cumulus parameterization was

used. NCAR ensemble forecast output is available

fromNCAR’sResearchDataArchive (https://rda.ucar.edu/

datasets/ds300.0/).

Gridded stage IV (ST4) observations (Lin andMitchell

2005) from the National Centers for Environmental

Prediction (NCEP) were used for precipitation verifi-

cation (available from https://www.emc.ncep.noaa.gov/

mmb/ylin/pcpanl/stage4/). All 1–36-h forecasts from the

2017NCARensemble (364 cases, 1 January–30December)

were used for quantitative analysis. To compare to obser-

vations, the 3-km precipitation forecasts were interpolated

to the ST4 grid using a distance-weighted interpolation: at

each ST4 grid point, an interpolated forecast value was

calculated using data at the four model grid points closest

to each ST4 grid point weighted by the inverse of the dis-

tance between the model and ST4 grid locations. Both

bilinear and budget interpolation methods (Accadia et al.

2003) were also tested and yielded nearly identical results

as the distance-weighted approach. Following Schwartz

et al. (2015), a verification domain spanning 308–458N, 828–
1058W was selected to ensure ST4 observations were ro-

bust and far from lateral boundaries. Although 48-h

forecasts were available, this work only used hourly

accumulated precipitation forecasts within the first 36 h

to generate PM and LPM products.

b. Evaluation methods

To evaluate EnMean and EnMax precipitation place-

ment, as well as their associated PM products, we com-

puted fractions skill scores (FSSs; Roberts and Lean

2008), as is common for high-resolution QPF evaluation

(Roberts and Lean 2008; Mittermaier and Roberts 2010;

Schwartz and Liu 2014; Schwartz et al. 2014). The FSS

is a neighborhood approach that measures spatial skill.

A perfect forecast has an FSS of 1.0, while a no-skill

forecast has an FSS5 0. FSSs can be computed for every

precipitation forecast, but it is usually more informative

to aggregate FSSs across many forecasts. So, we com-

puted aggregate FSSs both for individual forecast hours

and periods spanning multiple forecast hours. The hourly

scores show evolution of forecast performance, while

aggregates over all 36 forecast hours succinctly evaluate

the overall performance of the forecasts.

Although the EnMean and EnMax have identical

areal coverages of nonzero precipitation, within pre-

cipitation areas event placementmay substantially differ

and the EnMean and EnMax have obviously different

PDFs. Because reassignment in the PM procedure is

based on locations of events within a reference field (i.e.,

EnMean or EnMax), to fully understand PM products it

is necessary to understand spatial performance of the

reference field.

Thus, we examined differences regarding spatial char-

acteristics and skill between the EnMean and EnMax. To

do so, we used precipitation percentile thresholds to ac-

count for the very different PDFs of the EnMean and

EnMax, which allows for a robust examination of spatial

skill without contamination from bias (e.g., Roberts and

Lean 2008; Mittermaier and Roberts 2010; Schwartz and

Liu 2014; Gowan et al. 2018). For the kth precipitation

percentile threshold, (100 2 k) % of grid points have

precipitation values larger than the physical threshold

corresponding to the kth precipitation percentile thresh-

old (e.g., if the physical threshold corresponding to the

95th precipitation percentile is 10.0mmh21, 5% of points

have precipitation .10.0mmh21). Precipitation percen-

tile thresholds and their corresponding physical thresh-

olds were computed for hourly accumulated precipitation

across the verification domain following Schwartz and

Liu (2014).

To determine the significance of the difference be-

tween any two products, the resampling procedure de-

scribed by Hamill (1999) was used. The resampling was

repeated 1000 times and the significance was determined

by the 95% confidence interval. FSSs were computed

separately for each season because of seasonal diversity

regarding synoptic forcing that causes variations of

precipitation amounts and predictability over the

CONUS (Schwartz et al. 2019).

4. Spatial distributions and skill of the EnMean
and EnMax

According to the average of one year statistics (Fig. 1),

for a given precipitation percentile, the corresponding

EnMax physical thresholds were always higher than the

EnMean physical thresholds (i.e., EnMax precipitation

was highest for a chosen precipitation percentile), as

expected. EnMax precipitation percentiles were always

much higher than those observed. For the 94th precipi-

tation percentile threshold and below, EnMean precip-

itation percentiles were higher than observed precipitation

percentiles (Figs. 1a–c), and for the 98th precipitation
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percentile threshold and above, EnMean precipitation

percentiles were lower than those observed (Figs. 1e–j),

consistent with EnMean tendencies to overly smooth

and decrease maximum magnitudes. However, PM mean

precipitation percentiles, which reflect the ensemble PDF,

well matched ST4 precipitation percentiles, indicating in-

dividual ensemble members captured the observed pre-

cipitation frequency.

Obviously, neither the EnMean nor EnMaxmagnitudes

were appropriate compared to observations. However, for

PM purposes, their magnitudes are irrelevant; only their

spatial representations matter, and Fig. 1 clearly shows

that precipitation percentile thresholds must be used to

evaluate the relative spatial performance of EnMean

and EnMax precipitation forecasts because of their very

different PDFs.

a. Ensemble overlap and implications for EnMean
and EnMax precipitation percentile distributions

Inspired by Fig. 8a of Hamill et al. (2017), we used a

schematic diagram (Fig. 2) to demonstrate the EnMean

and EnMax for a number of scenarios differing by the

overlap among individual ensemble members. Their

figure showed a typical medium-range ensemble fore-

cast where precipitation peaks of various ensemble

members differed in positions and magnitudes, which

forecasters might often see. In this work, five scenarios

were designed with four members whose maximum

precipitation amounts slightly differed. In each scenario,

the largest amount corresponded to a precipitation

percentile of 100% (the maximum precipitation value).

Unlike the precipitation percentiles that were computed

across the verification domain, the precipitation per-

centile values in Fig. 2 were computed within a one-

dimensional domain with 80 grid points and were only

computed for the EnMax and EnMean. There are some

grid points with the same precipitation amounts; to as-

sign different percentile values for those points, we de-

termined the precipitation percentile values from large

to small according to the locations from right to left (e.g.,

assuming precipitation values at grid points 35 and 55

were identical, the larger precipitation percentile was

assigned to point 55). Note that only 4 members were

used in this schematic diagram, and we refer to the

FIG. 1. The relationship between the hourly precipitation amount and the corresponding precipitation percentile as a function of forecast

hour; data shown in plots are averaged over 364 cases and are computed within the verification domain.
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FIG. 2. (a)–(q) The schematic plots of (left) overlap types of members, (middle) the corresponding EnMax and

EnMean, and (right) the precipitation percentiles of the EnMax and EnMean, where forecast probabilities at the

0.0mmh21 threshold are shown in black solid lines in the left panels. The root-mean-square differences (RMSD)

between the EnMax and EnMean magnitudes and the corresponding differences of precipitation percentiles are

shown in (p) and (q).
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probability of 0% (no overlap) and 25% (two mem-

bers overlap) as low probability, 50% and 75% as

moderate/relatively high probability, and 100% (all

members overlap) as very high probability.

Type-I (Fig. 2a) is an extreme example with no

overlap between members, so at all locations the prob-

ability of precipitation .0.0mmh21 is approximately

25%. Although the EnMean and EnMax precipitation

amount in type-I pronouncedly differ (Figs. 2b,p), the

corresponding precipitation percentiles are very similar

(Figs. 2c,q) because relative positions of low and high

amounts within the EnMean and EnMax fields are

identical. The tiny difference between the EnMean and

EnMax precipitation percentiles was because of as-

signing successive ranks to equal values. In addition, the

computational truncation is also attributable to the tiny

difference. Type-IV (Fig. 2j) represents another ex-

treme where members highly overlap, leading to a

probability of 100% throughout most of the nonzero

precipitation area. Given this strong overlap, the EnMean

and EnMax are similar in terms of both their absolute

magnitudes and precipitation percentiles (Figs. 2k,l,p,q).

These two extreme scenarios illustrate that precipi-

tation percentile differences between the EnMean and

EnMax are small when the probability throughout the

nonzero precipitation area is very high (100%) or very

low. Therefore, for these extreme situations, the similar

EnMean and EnMax precipitation percentile distribu-

tions implies the PM mean and PM max may be similar

and have comparable forecast skill.

In contrast, precipitation percentile differences be-

tween the EnMean and EnMax are larger for less ex-

treme overlap situations that are likely more realistic.

For type-II, where members slightly overlap (Fig. 2d),

precipitation amount differences between the EnMean

and EnMax are large (Figs. 2e,p) while precipitation

percentile differences are similar except for when

probability is .0.5 (Fig. 2f), where EnMax reaches a

local minimum whereas EnMean has a subtle local

maximum (Fig. 2e). For type-III and type-V that have

larger but still moderate probabilities, even more pre-

cipitation percentile differences between the EnMean

andEnMax appear (Figs. 2g–i, m–o). Type-III represents a

situation where moderate overlap occurs throughout the

nonzero precipitation area while type-V represents the

coexistence of moderate overlap and an outlier. In both of

these circumstances, spatial placement differences between

the EnMean andEnMax are largest (Figs. 2i,o,q); there are

three peaks of EnMax precipitation percentiles between

grid points 0 and 30with only one peak in the same area for

EnMean precipitation percentiles (Figs. 2i,o).

Collective results in Fig. 2 indicate that spatial place-

ments of the EnMean and EnMax substantially differ

whenmembers moderately overlap, while differences are

small when members rarely or fully overlap. Therefore,

there may be little difference between the PM mean and

PMmax when members highly agree or disagree, but we

can expect larger differences between them during more

realistic situations when moderate overlap among mem-

bers dominates.

b. Assessment of precipitation placement

FSSs for 1-h accumulated precipitation aggregated

over all 36 h and the verification domain indicate FSSs

increased with radius of influence (g) and decreased

with threshold (Fig. 3). For the 92nd precipitation per-

centile threshold and below, which represents light,

stratiform precipitation (Figs. 1a,b), for most seasons

and g, the EnMean often had significantly higher FSSs

than the EnMax (Figs. 3a,c,e,g). Conversely, in all sea-

sons for most g, the EnMax had significantly higher FSSs

than the EnMean for the 96th precipitation percentile

threshold and above (Fig. 3), corresponding to observed

precipitation greater than approximately 1.0mmh21

(Figs. 1d–j) that includes convection. Significant differ-

ences were most noticeable at thresholds exceeding

the 98th precipitation percentile in winter and spring

(Figs. 3a–d), with smaller, but still often significant,

differences in summer and autumn (Figs. 3e–h).

Further analysis revealedmore precipitation spread in

summer and autumn than in spring and winter (not

shown), consistent with weak forcing, and hence, less

predictability and lower probabilities. In terms of

Figs. 2c and 2f, when low probabilities prevail, dif-

ferences between EnMax and EnMean precipitation

percentiles are small, consistent with smaller differ-

ences between the two products in the summer and

autumn (Figs. 3e–h). In contrast, during winter and

spring, stronger synoptic-scale forcing is associated

with greater predictability, less spread, and higher

probabilities, and according to Figs. 2g–i and 2m–o,

for moderate ensemble member overlap, differences

between EnMax and EnMean spatial placement in

terms of precipitation percentiles become larger. Thus,

the idealized scenarios are consistent with the largest

differences between EnMean and EnMax FSSs occur-

ring in winter and spring.

Overall, the EnMax performed comparably to or

worse than the EnMean for lower precipitation per-

centile thresholds but clearly outperformed the EnMean

at higher precipitation percentile thresholds, implying

that the EnMax provided more accurate precipitation

placement for smaller-scale, less common events, like

convection. These findings suggest using the EnMax as

the basis for reassignment in PM methods is appropri-

ate, as the EnMax spatial representation of events was
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FIG. 3. The seasonal aggregated FSSs over 36 forecast hours as a function of radius of

influence (km) for 1-h accumulated precipitation at (left) lower and (right) higher

precipitation percentile thresholds. Seasons are defined as follows: (a),(b) winter (1 Jan–

14 Mar and 15–30 Dec); (c),(d) spring (15 Mar–14 Jun); (e),(f) summer (15 Jun–14 Sep);
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reasonable and better than the EnMean for most pre-

cipitation percentiles, including those encompassing

moderate and heavy precipitation.

c. Example case: 8 October 2017

In addition to quantitative analysis, we performed a

qualitative evaluation of precipitation percentiles (Fig. 4)

to understand why EnMax FSSs were higher than

EnMean FSSs at and above the 96th precipitation

percentile threshold. The precipitation percentiles

were computed for the ST4 observations, EnMax, and

EnMean across the verification domain mentioned in

section 3a. A frontal precipitation case that occurred

in the evening of 8 October 2017 (UTC) and spanned

several states was selected. The frontal precipitation

band was accompanied by a tropical depression near

the Gulf of Mexico coast. During this case period,

a shortwave trough within zonal 500-hPa flow pro-

gressed eastward, ahead of which warm and highly

moist low-level southwest flow provided a favorable

environment for a squall line, which moved through

portions of Michigan, Ohio, Indiana, Kentucky, and

Tennessee and produced 1-h rainfall amounts greater

than 25mmh21. During that evening, rainfall associated

with the tropical depression was responsible for the

maximum precipitation of approximately 29mmh21.

Observed precipitation exceeding the 99.9th precipi-

tation percentile threshold at 0300 UTC 9 October 2017

(purple areas) was mostly distributed in areas A, D, E,

and the north border of area B (Fig. 4a). The highest

precipitation percentile appeared in area E, corre-

sponding to the maximum observed 1-h rainfall. In area

C, observed precipitation at most grid points did not

reach the 98th precipitation percentile threshold.

 
(g),(h) autumn (15 Sep–14 Dec). The EnMax and EnMean are shown with solid and

dashed lines, respectively. Near the top of each plot are markers that represent FSS

values of the EnMax being significantly higher than (solid circles), or significantly lower

than (crosses), or comparable to (blank) those of the EnMean, where markers and the

corresponding lines are common in colors.

FIG. 4. Probabilities of 1-h accumulated precipitation (green contours of 10%, 40%, and 60%) at the 5mmh21 threshold and precipitation

percentiles (filled colors) at 0300 UTC 8 Oct 2017 for the (a) ST4 observations, (b) EnMean, and (c) EnMax.
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Spatial distributions of both EnMean and EnMax

precipitation percentiles (Figs. 4b,c) differed in details

and degree to which they matched observed precipita-

tion percentiles. The spatial placement of EnMean

precipitation percentiles approximately followed the

forecast probabilities (high precipitation percentiles were

associated with high probabilities), while EnMax precipi-

tation percentiles were not closely associated with forecast

probabilities (e.g., area C), consistent with expectations

that the EnMean andEnMax emphasize and deemphasize

agreement among members, respectively.

However, the association between high EnMean

precipitation percentiles and high probabilities was

not typically favorable. For example, in area B, the

EnMean produced substantial coverage of precipita-

tion percentiles .0.9975 within the 60% probability

area (Fig. 4b), but these coverages were much larger

than those in the EnMax (Fig. 4c) and observations

(Fig. 4a). Similar behavior occurred in area C, where

EnMean precipitation percentiles were too high whereas

EnMax precipitation percentiles were substantially lower

and closer to those observed. In low forecast probability

(;10%) areas (D and E), the EnMean missed the ob-

served high precipitation percentiles, while they were

better captured in the EnMax.

In general, EnMax precipitation percentiles were

closest to those observed for this case. Furthermore, this

case suggests that higher EnMax FSSs for precipitation

percentile thresholds $0.96 (Fig. 3) may be partly at-

tributable to improved EnMax performance in areas

with relatively high probabilities, as suggested by Figs. 2g

and 2m, and further explored in the next subsection.

d. Statistical relationship between precipitation
percentiles and forecast probabilities

Figure 4 suggests the EnMean tended to have high

precipitation percentiles in areas with high forecast

probabilities and low precipitation percentiles in low

forecast probability areas. Furthermore, for high pre-

cipitation percentiles, it appears that the EnMax pre-

cipitation percentile distribution (placement and local

areal coverage) was more similar to that observed than

the EnMean, although the EnMax was noisier than the

EnMean. Moreover, as long as one member in the en-

semble predicts relatively heavy precipitation at a grid

point, the EnMax tends to assign a high precipitation

percentile to that grid point, and this characteristic of the

EnMax appears to benefit forecast skill for high pre-

cipitation percentile thresholds (Figs. 3 and 4).

To systematically determine whether situations as in

Fig. 4 often occurred, we produced one year of aggre-

gate statistics of the relationship between forecast

probabilities of precipitation .5.0mmh21 and ST4

observations, EnMean, and EnMax precipitation per-

centiles (Fig. 5). Given that forecast probability was de-

termined solely by the ensemble, the number of samples

in each probability bin was identical for all products.

Overall, bounds of the interquartile ranges (IQRs;

distance between the 25th and 75th percentiles1 of the

boxplot distribution) for the EnMean, EnMax, and ob-

served precipitation percentiles increased with probability

for all seasons, suggesting high precipitation percentiles

(heavy precipitation) were associated with high probabil-

ities (Fig. 5). However, compared to the EnMean, EnMax

IQRs in most probability bins were broader, indicating

ensemble probabilities were not as closely associated with

high precipitation percentiles as in theEnMean, which had

the narrowest IQRs. ST4 observations had much wider

IQRs than the EnMax and EnMean, indicating a weaker

relationship between observations and forecast probabili-

ties, which seems sensible due to greater independence

between observed and forecast quantities than between

two forecast quantities (i.e., the EnMean/EnMax and en-

semble probabilities). Similar results were obtained when

using different probabilistic event definitions for the x axis

of Fig. 5 (not shown).

Because high EnMean precipitation percentiles were

strongly associated with high ensemble probabilities, it

was natural to consider quality of the probabilistic

forecasts, especially in regards to ensemble spread and

placement of probabilistic events. So, reliability dia-

grams were constructed (Fig. 6), which revealed an

overconfident ensemble, particularly in high probability

bins, consistent with other studies indicating the NCAR

ensemble was spread-deficient (Schwartz et al. 2015,

2019; Gowan et al. 2018). Thus, it appears high proba-

bility events were often incorrect, which was related

to insufficient ensemble spread; rank histograms also

documented insufficient spread (not shown) and the

mean annual ratio of domain average ensemble spread

to root-mean-square error was approximately 0.4 for 1-h

precipitation forecasts. An example of insufficient ensem-

ble spread in a high probability area is observed precipi-

tation at a grid point,1mmh21 but all ensemblemembers

predict precipitation .10mmh21 with values ranging

from 11.0 to 20.0mmh21, which corresponds to a proba-

bility of 100%at the 10mmh21 threshold. In this situation,

the root-mean-square error is .10mmh21 (ensemble

mean. 10.0mmh21 and observation, 1.0mmh21), but

the ensemble spread is,10.0mmh21, which is insufficient.

In other words, the above high probability appears in the

wrong place and there is insufficient ensemble spread to

1 These percentiles measure the distribution of the precipitation

percentiles in each probability bin in Fig. 5.
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FIG. 5. The distribution of aggregated precipitation percentiles as a function of probabilities of 1-h accumulated precipitation at the

5.0mmh21 threshold for the (a),(d),(g),(j) EnMean; (b),(e),(h),(k) EnMax; and (c),(f),(i),(l) ST4 observations. In each season and each

probability bin, precipitation percentiles within the verification domain are gathered over all 36 forecast hours. Each boxplot depicts the

distribution of the precipitation percentile of precipitation amount in the corresponding probability bin.
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encompass the observed precipitation value. So, because

high EnMean precipitation percentiles were associated

with high probabilities that were often misplaced (Fig. 5),

high EnMean precipitation percentiles were also often

misplaced. Overall, the relatively poor EnMean perfor-

mance at most precipitation percentiles appears related to

poor ensemble spread.

However, the EnMax is less tied to the probability

distribution than the EnMean (Fig. 5) because it is less

sensitive to ensemble spread. This EnMax characteristic

appears beneficial for high precipitation percentile

forecasts (Fig. 3) and justifies use of a spatial field for

PM that does not highly follow the probability distri-

bution of spread-deficient ensembles.

These findings are important to document because

most high-resolution ensembles have poor reliability for

precipitation in high probability bins (Duc et al. 2013;

Schwartz et al. 2015; Hagelin et al. 2017; Schwartz et al.

2019). Thus, in spread-deficient ensembles where EnMean

precipitation is strongly related to forecast probabilities (as

in Fig. 5), the EnMax appears to better represent spatial

placement of uncommon events. It is unclear whether

similar advantages for theEnMaxmayoccur in eitherwell-

calibrated ensembles or ensembles with too much spread.

5. Evaluation of the PM and LPM products

The above results indicate that the EnMax is a cred-

ible field to use as the basis for reassignment in the

PM procedure. Next, we investigate whether using the

EnMax translates into better PM and LPM products

than when using the EnMean. Because the PM mean

and PM max have identical precipitation frequencies

and only differ regarding spatial placement, we used

physical thresholds ranging from 1.0 to 20mmh21 to

compare performance of the PM mean and PM max.

Although using physical thresholds does not control for

bias in the FSS, because PM mean and PM max biases

are identical, differences between their FSSs can be at-

tributed to different spatial placements.

a. Forecast skill of the PM products

Figure 7 shows aggregate FSSs as a function of fore-

cast hour for 1-h accumulated precipitation for g 5
60km. At most forecast hours, FSSs for both PM prod-

ucts decreased as threshold increased. For thresholds$

5mmh21, the PM max usually outperformed the PM

mean, especially in winter and spring (Figs. 7a,b), while

in summer and autumn, benefits of the PM max were

mainly for thresholds $ 10mmh21 (Figs. 7c,d). The

generally better PM max performance compared to the

PM mean for thresholds $ 5mmh21 was likely due to

better spatial placement of precipitation in the EnMax

at high precipitation percentiles (Fig. 3). Conversely, for

the 1mmh21 threshold, the PM mean was better than

the PMmax at most forecast hours in all seasons (Fig. 7),

consistent with poorer performance of the EnMax at

lower precipitation percentiles (Figs. 3a,c,e,g).

Since the FSS is sensitive to neighborhood radius (g),

we investigated FSSs of the PM products with respect to

g (Fig. 8). As expected, FSSs of both PM products in-

creased with g. Higher FSSs were obtained by the PM

max at thresholds$ 10mmh21 in all seasons for most g.

This advantage of the PM max was also evident for the

5mmh21 threshold in winter and spring for all g and in

summer for g $ 60 km.

For light precipitation (1mmh21), the PM max was sig-

nificantly worse than the PM mean in winter, summer, and

autumn for all g (Fig. 8), again consistent with poorer per-

formance of the EnMax compared to the EnMean at low

FIG. 6. Reliability diagrams for the (a) 1.0, (b) 5.0, and (c) 10.0mmh21 precipitation thresholds aggregated over all 364 hourly 1–36-h

forecasts based on gridscale probabilities. The diagonal line represents perfect reliability, and the forecast frequencies (%) within each

probability bin are shown as open circles.
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precipitation percentiles. One possible cause of the PMmax

inferiority at the 1mmh21 threshold is that the PM mean

well captures light, stratiformprecipitation, which often falls

over broad areas that can be reasonably represented by the

smoothEnMean, while the PMmax, based upon the noisier

EnMax field, may not be beneficial for widespread, light

precipitation events. Another plausible cause is that the

global reassignment nature of the PM mean and PM max

hurts the PMmax for light precipitation, which is examined

next by evaluating the LPM products.

b. Forecast skill of the LPM products

The LPM products were also evaluated with the FSS

(Figs. 9 and 10 ). Compared to Figs. 7 and 8, the biggest

difference is that the LPM max outperformed the LPM

mean for the 1mmh21 threshold in all seasons. This

result implies that the PM method of reassigning pre-

cipitation amounts across the entire forecast domain

caused the lower PM max FSSs compared to the PM

mean for the 1mmh21 threshold.

In addition, for thresholds$ 5mmh21, LPM max FSSs

were usually significantly higher than LPM mean FSSs

(Figs. 9 and 10), although differences between the LPM

maxandLPMmeanwere not as large as those between the

PM max and PM mean. This result was expected because

the localization aspect of the LPM products effectively

means there are fewer options to where values can be re-

assigned, and by definition, reflects a more local product.

FIG. 7. Seasonal aggregated FSSs at a scale of 60 kmas a function of forecast hour for 1-h accumulated precipitation

at thresholds of 1 (green), 5 (blue), 10 (orange), and 20 (red) mmh21 over the verification domain. Solid lines and

dashed lines denote the PMmax and PMmean, respectively. Near the top of each plot aremarkers that represent FSS

values of the PMmax being significantly higher than (solid circles), or significantly lower than (crosses), or comparable

to (blank) those of the PM mean, where markers and the corresponding lines are common in colors.
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These findings are encouraging and suggest that using a

better reference field as the basis for reassignment in

LPM products is also beneficial. However, because the

LPM max and LPM mean have different precipitation

frequencies, biases could have impacted the FSSs. But,

when FSSs were computed using precipitation percentile

thresholds, LPM max still outperformed LPM mean for

all seasons (not shown), implying that improved spatial

placement was associated with higher LPM max FSSs in

Figs. 9 and 10.

6. Conclusions

This work highlighted the importance of spatial place-

ment in the PM method and designed and evaluated PM

products based on theEnMax.All ensembleQPFproducts

were generated from NCAR’s 3-km convection-allowing

ensemble over 364 cases. Spatial skill of the EnMean,

EnMax, PM mean, and PM max were evaluated with

the FSS.

According to the results in sections 4 and 5, several

conclusions can be drawn:

1) Precipitation placement of the EnMax matched ST4

observations better than the EnMean for precipita-

tion greater than the 96th precipitation percentile

threshold, suggesting the EnMax had more accurate

placement for relatively uncommon events with high

local magnitudes, like convection. However, the

EnMean outperformed the EnMax for the lowest

precipitation thresholds.

2) The distribution of EnMean precipitation percentiles

closely followed the distribution of forecast proba-

bilities, which often resulted in enlargement of local

areal coverages of high precipitation percentiles

(.0.9975) within high forecast probability areas

FIG. 8. As in Fig. 3, but for aggregated FSS values calculated over all 36 forecast hours in a season and as a function

of the influence radius (km).
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(.60%) and fewer high precipitation percentiles in

low probability areas (;10%). Given this EnMean

correspondence between high precipitation per-

centiles and probabilities and the fact that the

ensemble had insufficient spread and often mis-

placed areas of high probabilities, it appears that

the spread deficiency of the ensemble contributed

to the relatively poor EnMean placement. In con-

trast, the EnMax precipitation percentile distribu-

tion was not as closely tied to the forecast probability

distribution, as the EnMax deemphasizes agreement

among members. Therefore, using the EnMax as the

basis for spatial placement may be attractive for

spread-deficient high-resolution ensembles, particu-

larly for rare events.

3) The PM max outperformed the PM mean for

precipitation rates$ 5mmh21 in winter and spring

and precipitation rates $ 10mmh21 in all seasons.

However, the PM mean had higher FSSs for light

precipitation (1mmh21 threshold). These results are

consistent with the relative skill of the EnMean and

EnMax and demonstrate that spatial skill of the

reference field has a great impact on performance

of PM products, because the only difference between

the PM mean and PM max is the spatial placement.

4) The LPM max outperformed the LPM mean in all

seasons at almost all thresholds and forecast hours,

including at light precipitation thresholds. This find-

ing suggests that the reassignment across the entirety

of a large domain caused the lower PM max FSSs

compared to the PMmean at the 1mmh21 threshold.

Our results are consistent with previous findings that

precipitation displacement is the dominant source of

QPF error (Ebert and McBride 2000; Cuo et al. 2011),

especially for convective rainfall.

FIG. 9. As in Fig. 7, but for the LPM mean and LPM max.
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Despite promise of the EnMax for PM applications,

we acknowledge that the EnMaxmay not be the optimal

spatial representation of precipitation, and other spatial

reference fields may further improve performance of

PM products. Thus, PM products based on the 80th and

90th precipitation percentiles of members’ precipitation

values (hereinafter PM80 and PM90) were also prelim-

inarily examined, inspired by Zhang (2018), who utilized

forecast distributions of the 90th precipitation percentile

in a deterministic product derived from ensemble out-

put. While performances of the PM80 and PM90 prod-

ucts were comparable to or better than PM mean

performance at almost all thresholds, they performed

worse than the PM max for thresholds$ 10mmh21 but

better than PM max for the 1mmh21 threshold, similar

to the difference between PMmean and PMmax. PM80

and PM90 also obtained higher FSSs for the 90th–98th

precipitation percentile thresholds than PM mean,

implying that EnMax is not the only choice and the

optimal spatial representation for PM methods needs

further investigation.

In conclusion, the PM max appears to be a useful

deterministic product derived from ensemble output,

especially for ensembles with insufficient spread and for

heavier precipitation events. However, because perfor-

mance of PM and LPM products rely on ensemble

forecast systems’ representation of precipitation loca-

tion, precipitation frequency, and member overlap,

whether the PM max and LPM max are still more

skillful than EnMean-associated PM products in other

ensembles is worth studying.
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