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Key Points: 

 A hybrid dynamical-statistical model for predicting tropical cyclone frequency and 

trajectory at the subseasonal timescale was developed. 

 Significant skill can be achieved with a forecast lead time of 25 days. 

 The prediction skill of this hybrid model is superior to the statistical and dynamical 

model-based predictions examined in this study. 
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Abstract 

Tropical cyclone (TC) genesis prediction at the extended-range to subseasonal timescale 

(a week to several weeks) is a gap between weather and climate predictions. The current 

dynamical prediction systems and statistical models show limited skills in TC genesis 

forecasting at the lead time of 1–3 weeks. A hybrid dynamical-statistical model is developed 

that reveals capability in predicting basin-wide TC frequency in every 10-day period over the 

western North Pacific at a 25-day forecast lead, which is superior to the statistical and 

dynamical model-based predictions examined in this study. In this hybrid model, the 

cyclogenesis counts for different TC clusters are predicted respectively using the statistical 

models in which the large-scale predictors associated with intraseasonal oscillation evolutions 

are provided by a dynamical model. A probabilistic map of TC tracks at the subseasonal 

timescale is further predicted by incorporating the climatological probability of track 

distributions of these TC clusters. 

 

Plain Language Summary 

Tropical cyclone (TC) is a highly destructive type of natural disaster. Extending forecast 

lead times and increasing the forecast accuracy of TC genesis and movements are the keys for 

disaster prevention and mitigation. However, TC predictions at the subseasonal timescale (10 

days to several weeks in advance) have not reached a satisfactory level. Most dynamical 

prediction systems and statistical models show skills of 1–3 weeks for subseasonal TC genesis 

prediction. In this study, we developed a hybrid dynamical-statistical prediction approach for 

advancing the capability to predict TC frequency over the western North Pacific (WNP). 

Considering the close linkage between intraseasonal oscillation and WNP TC genesis, multiple 

linear regression models in which the intraseasonal dynamic and thermodynamic conditions 
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serve as the predictors were constructed for different TC clusters over the WNP. We find that 

future TC genesis counts can be predicted once we obtain the information on intraseasonal 

predictors from a dynamical prediction system. This hybrid model shows good skills for basin-

wide TC genesis prediction at the forecast lead time of 25 days, and is superior to the statistical 

and dynamical model-based predictions examined in this study. In addition, a probabilistic map 

of WNP TC trajectories is also skillfully predicted at the subseasonal timescale. 

 

1 Introduction 

As one of the most extreme weather events, tropical cyclones (TCs) pose a major threat 

to people’s lives and property in TC-prone coastal regions. Substantial progress has been made 

by the research community and at operational centers in terms of providing skillful predictions 

of TC activity at medium-range (up to 10 days) and seasonal (3–6 months) timescales. 

However, TC prediction at the extended-range to subseasonal timescale (a week to several 

weeks) remains a gap between medium-range weather forecast and seasonal prediction 

(Waliser 2011; Vitart et al. 2012), primarily due to the lack of, and underutilized, sources of 

predictability at this intermediate timescale.  

Earlier works on TC prediction at the subseasonal timescale were mainly based on 

statistical forecast models. For instance, using the real-time multivariate Madden–Julian 

Oscillation (MJO) index (i.e., RMM1 and RMM2), the two leading modes of Indo-Pacific sea 

surface temperature (SST) variability, and information on climatological TC activity, Leroy 

and Wheeler (2008) developed a multiple logistic regression model to predict weekly TC 

activity in the Southern Hemisphere. A similar approach was later applied to TC prediction 

over the eastern Pacific and Atlantic basins by Slade and Maloney (2013). Their results showed 

that the MJO serves as an important source of predictability; a higher skill could be achieved 

(out to a two-week forecast lead) when the RMM indices were included as predictors.  
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The improvements of dynamical models in predicting the intraseasonal oscillation (ISO) 

and its relationship with TCs suggest the possibility of predicting TCs at the subseasonal 

timescale (Vitart et al. 2010; Xiang et al. 2015a; Lee et al. 2018; Jiang et al. 2018; Gregory et 

al. 2020; Lee et al. 2020). Vitart et al. (2010) indicated that the monthly forecast system of the 

European Centre for Medium-Range Weather Forecasts (ECMWF) was able to predict the 

weekly TC occurrence in the Southern Hemisphere at the forecast lead time of two weeks, as 

displayed by the logistic regression model in Leroy and Wheeler (2008). With a skillful MJO 

prediction out to 27 days (Xiang et al. 2015b), the updated high-resolution (50-km) coupled 

Global Climate Model (GCM) of the Geophysical Fluid Dynamics Laboratory (GFDL) 

realistically predicted two destructive landfalling TCs over the Atlantic and Pacific about 11 

days in advance (Xiang et al. 2015a). Jiang et al. (2018) extended the work of Xiang et al. 

(2015a) to assess the subseasonal TC genesis prediction skill for about 600 TC cases predicted 

by the same GFDL model; they found that only 10% of cyclogenesis events could be predicted 

at and beyond the one-week forecast lead. Using the subseasonal-to-seasonal (S2S) prediction 

dataset (Vitart et al. 2017), Lee at al. (2018) documented that only a few of the six S2S models 

showed skills for TC genesis prediction with the two-week (8–14 days) forecasts. Gregory et 

al. (2020) and Lee et al. (2020) extended the work of Lee et al. (2018) to assess prediction skills 

of probabilistic TC occurrence at a regional scale (15° latitude × 20° longitude) over different 

basins. They concluded that the ECMWF model and the prediction systems from Australia and 

France show good skills in predicting the probability of TC occurrence out to 3–4 weeks in 

advance. Additional progresses of subseasonal TC prediction can be found in the review paper 

of Camargo et al. (2019). 

The literatures reviewed above suggest that the state-of-the-art dynamical and statistical 

models still only have limited deterministic skills (one to two weeks) in TC genesis number 

prediction at the subseasonal timescale. Considering the significant statistical relationship 
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between western North Pacific (WNP) TC genesis and ISO-related dynamic and 

thermodynamic conditions (Camargo et al. 2009; Hsu et al. 2011; Zhao et al. 2015), and the 

improved skills in MJO prediction by dynamical models (Xiang et al. 2015b), we propose a 

hybrid dynamical-statistical approach to predict basin-wide TC occurrence frequency. In 

addition to cyclogenesis prediction, a probabilistic map of TC trajectories is also predicted by 

involving the climatological track patterns of WNP TC clusters from observations (Kim et al. 

2012).  

2 Data and validation methods 

2.1 Observational data 

The TC data for the period 1979–2013 were obtained from the U.S. Department of 

Defense Joint Typhoon Warning Center (JTWC) Best Track Database. We focused on the TCs 

with tropical storm intensity or higher (wind speed ≥ 34 kt). Other data used included large-

scale thermodynamic and dynamic environments related to TC genesis, including daily SST, 

zonal and meridional winds at 850 and 200 hPa, vertical velocity at 500 hPa, and specific 

humidity at 700 hPa from the ERA-Interim reanalysis dataset (Dee et al. 2011), and daily 

outgoing longwave radiation (OLR) from the National Oceanic and Atmospheric 

Administration (NOAA) polar-orbiting satellites (Liebmann and Smith 1996). All the large-

scale fields were regridded to a horizontal resolution of 2.5° × 2.5° before analysis.  

2.2 Dynamical model and hindcast data 

The dynamical model used in this study is the Forecast-Oriented Low Ocean Resolution 

(FLOR) version of the GFDL coupled model (Vecchi et al. 2014) with a newly developed 

double-plume convection scheme (Zhao et al. 2018). It showed a 27-day lead forecast skill for 

the MJO in the wintertime (Xiang et al. 2015b). For the boreal summer ISO over the WNP, it 

shows skills in predicting the evolution of dominant ISO modes at 15-day forecast lead and the 
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spatial distributions of intraseasonal convection, circulation and SST anomalies up to 40-day 

forecast lead (Text S1, Fig. S1). This model has a horizontal resolution of 50 km with 32 

vertical levels. Using a nudging technique toward observations to obtain initial conditions 

(Xiang et al. 2015b), hindcasts were carried out every 5 days (the 1st, 6th, 11th, 16th, 21st, and 

26th) for each month from April to November during the 11 years of 2003–2013. For the 

hindcasts initialized on each day, a series of 50-day integrations with initial conditions every 

four hours (i.e., at 0000, 0400, …, 1600, and 2000 UTC) constituted six ensemble members. 

Thus, in total there were 3168 hindcasts (11 years × 8 months × 6 days × 6 members) produced. 

Xiang et al. (2015a) and Jiang et al. (2018) detected TC geneses using the same hindcast data 

(Text S2). Thus, the skills in TC genesis prediction derived directly from this dynamical model 

and from our hybrid model can be compared.  

2.3 Skill scores  

Temporal correlation coefficient (TCC) and root-mean-square error (RMSE) are adopted 

to measure deterministic prediction skills:  

TCC(τ)=
∑ (pt(τ)-p(τ)̅̅ ̅̅ ̅)(ot-o̅)T
t=1

√∑ (p(τ)t-p(τ)̅̅ ̅̅ ̅)
2T

t=1 √∑ (ot-o̅)
2T

t=1

                            (1) 

and 

RMSE(τ)=√
1

T
∑ (p(τ)

t
-ot)

2T
t=1 .                                  (2) 

Here, τ represents the forecast lead time, pt and ot are the predicted and observed TC genesis 

frequency at the tth 10-day period, respectively, during the independent forecast period with T 

10-day periods (T = 220). p̅ and o̅ are the averages of predicted and observed TC genesis counts 

over the forecast period, respectively. 
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The relative operating characteristic (ROC; Stanski et al. 1989) score, defined as the area 

below the ROC curve (area under curve, or AUC), is used to assess the probabilistic prediction 

results (Vitart et al. 2010). The ROC curve is formed by dotting the hit rates (y-axis) against 

false-alarm rates (x-axis) of TC genesis for different probability thresholds with an interval of 

0.2. A perfect prediction is achieved when the AUC is equal to 1.0, while a no-skill forecast is 

called when an AUC is 0.5 or smaller. Although the ROC diagram provides information about 

the capability of the forecast to distinguish between several events with different outcomes, it 

is not sensitive to prediction biases (Jolliffe and Stephenson 2005) like reliability or attributes 

diagram (Wilks 2011; Zhang et al. 2019). 

 

3 Hybrid model construction and its prediction results 

3.1 Steps for developing the subseasonal TC prediction model 

The basin-total TC counts and probabilistic map of TC tracks over the WNP (100°E–180°, 

0°–60°N) in every 10-day period during the TC season (16 May to 5 December; 20 10-day 

periods in each year) were predicted at the forecast leads of 10–40 days. Figure 1 illustrates the 

major procedures of the hybrid dynamical-statistical prediction approach in our study. Similar 

to the track-pattern-based model for seasonal TC track-density prediction proposed by Chu et 

al. (2010), Kim et al. (2012) and Murakami et al. (2016), we objectively classify the WNP TCs 

into seven track patterns by using the fuzzy c-mean clustering method as several studies 

suggested that the optimum cluster number for the WNP TC activity is seven (Camargo et al. 

2007; Kim et al. 2011). Given the fact that each TC cluster reveals distinct genesis locations 

and trajectories (Fig. 2), one can predict the TC tracks by applying the observational 

climatological track pattern once the genesis count of individual clusters is known. In this study, 

the anomalous TC genesis counts of individual clusters relative to their annual cycles 
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(climatological 10-day-period mean) are predicted by statistical models in which the predictors 

are obtained from dynamical predictions. The basin-wide TC genesis numbers are then 

obtained from the summation of predicted anomalous TC counts and their annual cycles for all 

seven clusters. We used 24 TC seasons from 1979–2002 as the training period to construct the 

statistical models based on the concurrent relationships between TC (from the JTWC best-track 

data) and large-scale convection and circulation fields (from the NOAA OLR and ERA-Interim 

datasets) associated with the intraseasonal oscillation. An independent forecast was carried out 

for the 11 TC seasons of 2003–2013 by utilizing the predicted large-scale fields from the GFDL 

FLOR model for validation against the observations. There are 220 (20 10-day periods × 11 

years) and 480 (20 10-day periods × 24 years) time points for prediction in the independent 

forecast period and training period, respectively. 

To examine the sources of predictability, we first carried out a spectral analysis of the time 

series of anomalous TC genesis counts (Fig. 2). As we can see, there are significant peaks in 

the spectrum at the intraseasonal timescale from 20 to 90 days for individual TC clusters (Figs. 

2a–g) and all TC cases (Fig. 2h). This suggests that the ISO activities are one of the key factors 

exerting influences not only on the overall WNP TC activity (Camargo et al. 2009; Hsu et al. 

2011; Li and Zhou 2013; Zhao et al. 2015) but also on individual TC patterns. In other words, 

the ISO may provide predictability for subseasonal TC genesis predictions (Leroy and Wheeler 

2008; Vitart et al. 2010; Jiang et al. 2018; Lee et al. 2018) for these distinct clusters. Therefore, 

the intraseasonal large-scale thermodynamic and dynamic environments, such as OLR, SST, 

specific humidity at 700 hPa (q700), vertical velocity at 500 hPa (ω500), zonal vertical wind 

shear between 200 and 850 hPa (VWS), divergence at 850 hPa (D850), and relative vorticity at 

850 hPa (ζ850), which physically modulate the subseasonal variation of TC genesis (Camargo 

et al. 2009; Zhao et al. 2015), were selected to serve as the potential predictors. Note that for 

real-time application, the intraseasonal component of each predictor is derived using a non-
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bandpass-filtering method (Wheeler and Hendon 2004; Hsu et al. 2015; Qian et al. 2019). First, 

the low-frequency background state is removed by subtracting the climatological mean and 

first three harmonics of climatological annual variation from the observed raw data of the ERA-

Interim and NOAA OLR. Then, a 10-day average is applied to remove the high-frequency 

signals and also to obtain the predictors in every 10-day interval.  

As seen in the correlation maps between anomalous TC counts of Cluster One (C1) and 

large-scale ISO fields (Fig. S2), TC formations associated with different clusters are modulated 

by ISO-related background environments to varying degrees. To reduce the uncertainty of 

predictor selections, four methods were utilized to identify the key signals that can be used as 

efficient and reliable predictors (Text S3, Fig. S2). Then, the statistical models based on the 

stepwise multiple linear regression analysis were developed to predict the genesis counts in 

each 10-day period of individual TC clusters. The multiple linear regression forecast model for 

anomalous TC genesis counts (y) is expressed as follows: 

y=β
0
+∑ β

i
xi

k
i=1  ,                                                          (3) 

where k predictors and k + 1 parameters (βi values) are selected by stepwise regression analysis 

from the potential predictors. The results of selected predictors for each cluster based on each 

of the four methods are shown in Table S1. 

Using the large-scale ISO-related predictors in the future 40 days predicted by the GFDL 

coupled model, the TC genesis counts (y) of each cluster can be obtained. To derive the 

predicted ISO components, the predicted climatological daily mean as a function of start date 

and lead day was subtracted from the raw data. A 10-day average on the same dates as those in 

observations was then applied to remove high-frequency disturbances. Once the anomalous TC 

counts were predicted, we added the observed climatological mean of 10-day-period TC counts 

to obtain the total genesis counts in each 10-day period (future 1–4 10-day periods) for each 
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cluster. Then, the probability of TC track distributions in each 10-day period was derived by 

involving the climatology of each track probability (Text S4).  

3.2 TC genesis and trajectory prediction results 

The prediction skills for basin-total TC counts performed by the models for individual 

clusters (C1–C7 and their sum) and for the total cases (TCall) are assessed based on the chosen 

skill-score metrics, i.e., TCC, RMSE and AUC (Figs. 3 and S3). The upper limits of the 

statistical model’s skills can be obtained as the predictors are from the 10-day periods of 

observations (instead of dynamical model predictions), which could be considered as the lead 

0-day prediction. We first compared the prediction skills for anomalous TC counts using hybrid 

models with predictors defined by the four different methods. The results were not sensitive to 

the methods (Fig. S3). At the forecast lead of 10 days, all the hybrid models showed skills close 

to the forecast upper limits. Although the skills drop as the lead time become longer, the models 

are generally skillful in terms of TCC (AUC) out to 25-day (30-day) forecast leads (Fig. S3). 

Owing to the similar results, the average of the predictions based on the four methods was 

adopted as an ensemble prediction. After adding the climatological mean of 10-day-period TC 

counts (Fig. S5), the basin-total TC counts are predicted with TCC skill above 0.42 (i.e., the 

skill score performed by climatological prediction) beyond the 25-day forecast lead (Fig. S4). 

To verify whether our statistical models were over-fitted, a series of tests related to the sources 

of overfitting were carried out, including the uncertainty of data sample, selection bias and 

autocorrelation (Text S5). All the test results suggested that our statistical model performances 

are fairly robust without over-fitting issue. 

The superiority of this hybrid model can be seen from the comparison of its prediction 

skills with those of the dynamical prediction system (Text S2) and the purely statistical model 

(Text S6). The ensemble prediction of basin-total TC counts by the hybrid model shows a TCC 
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skill out to 25-day forecast lead (Fig. 3a), while the TCC skills are limited to about 10 days for 

both the statistical and dynamical models (Figs. 3d, g). The RMSEs (AUCs) of the hybrid 

model prediction are also lower (higher) than those displayed by the statistical and dynamical 

models (middle and bottom panels in Fig. 3). The deterministic prediction of TC genesis 

numbers over the WNP may supplement the information of TC genesis probability predicted 

by the ensemble system of the S2S models (Lee et al. 2018). 

Although the prediction skills regarding TC counts for individual clusters are similar to 

those of TCall (Fig. 3), the predicted TC genesis counts are useful for constructing probabilistic 

maps of TC frequency (TCF) over the WNP by involving the climatological probability of TC 

tracks in each cluster (Kim et al. 2012; see Text S4 for more detail). The climatological mean 

and standard deviations of the probabilistic maps for TCF derived from observations and hybrid 

model predictions are shown in Fig. S8. The high pattern correlation coefficients (PCCs) 

between model predictions and observations indicate that this track pattern-based method (Text 

S4) has reasonable capability in reproducing the spatial characteristics of TCF probability over 

the WNP (Fig. S8). The averaged PCC skill over the independent forecast period is significant 

at the forecast lead time of 35 days (Fig. S9). To reveal the skill with respect to TCF predictions, 

we show in Fig. 4 some cases of TCF probabilistic maps predicted at different lead times. For 

example, the high probabilities of TCs occurring over the Philippine Sea and South China Sea 

(cases 1 and 2) are predicted by the model at the lead time of 30 days (Figs. 4a, b). The 

recurving trajectories of TCs approaching Japan and the Korean Peninsula are also predicted 

at a long lead (Figs. 4c, d). The recent study of Lee et al. (2020) found that some S2S models 

are skillful in predicting regional TCF (in every 15° × 20° grid cell) at a long lead time out to 

four weeks based on the assessment of Brier skill score. Because the definition of track density 

based on the method of track-pattern-based model (Chu et al. 2010) is different from the 
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probability of TCF of Lee et al. (2020), it is not yet clear whether our finer resolution (5° × 5°) 

prediction of TC density outperforms the dynamical prediction of the S2S models. 

4 Summary and discussion 

Subseasonal prediction of TC activity has been challenging, while the state-of-the-art 

dynamical prediction systems show skills in the probabilistic predictions of TC occurrence 

anomalies with positive Brier skill scores at forecast leads up to 2–4 weeks over some basins 

(Lee et al. 2018; Gregory et al. 2020; Lee et al. 2020). Compared to the probabilistic prediction, 

the deterministic cyclogenesis (for both the location and time of TC genesis) prediction at the 

subseasonal timescale is much more difficult (Jiang et al. 2018). Only 10% of WNP TC geneses 

are predicted reasonably by one GFDL coupled model prediction system (Jiang et al. 2018). In 

this study, we developed a hybrid dynamical-statistical model to predict TC genesis counts 

over the WNP for different TC clusters in every 10-day period, and then constructed probability 

maps of TC tracks. Based on the modulating effects of ISO on WNP TC genesis, stepwise 

multiple linear regression models for individual clusters were developed, and the large-scale 

intraseasonal predictors used in the statistical models were incorporated from the predictions 

of the GFDL coupled model, which has capability in predicting the boreal summer ISO 

conditions related to TC genesis at leads of 15–40 days. Based on assessments of an 11-year 

independent forecast, these hybrid models show skillful predictions of total-basin TC genesis 

counts at the lead time of 25 days, which is superior to the statistical regression models based 

on the preceding intraseasonal fields as the predictors (purely statistical prediction) or the 

GFDL dynamical prediction system (purely dynamical prediction). The probabilistic map of 

TCF is also reasonably predicted at the subseasonal timescale.  

The results of hybrid model prediction are promising, which benefit from the skillful 

predictions of ISO from the hindcast of the GFDL coupled model. For operational application, 
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real-time prediction data of large-scale predictors are needed. In this respect, the S2S project 

provides a vital dataset for further establishing a real-time TC prediction system based on our 

hybrid model prediction approach. Moreover, the ensemble members of the S2S prediction 

system can be efficiently used for probabilistic TC predictions, which provide information on 

the uncertainty of the forecasts (Lee et al. 2018; Gregory et al. 2020; Lee et al. 2020). We are 

working with operational centers in TC-prone areas of China to advance this work. To improve 

the model skill, other useful predictors, such as high-frequency equatorial waves (Frank and 

Roundy 2006; Schreck et al. 2012) and extratropical signals (Zhang et al. 2017; Li et al. 2018), 

are worthy further exploration. For understanding the skill of the current model with respect to 

the other prediction systems, developing a unified framework for definitions and validations of 

subseasonal TC prediction skill is also urgently needed (Camargo et al. 2019). 
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Figure 1. A flow chart summarizing the procedures to construct the hybrid dynamical-statistical 

model for subseasonal TC genesis counts and trajectory predictions.  
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Figure 2.  Seven clusters of WNP TCs classified using the fuzzy c-means clustering method. (a–g) TC 

trajectories (black lines) and their central trajectories (red lines) for each of the cluster patterns of C1 to C7. 

(h) Trajectories of all TCs over the WNP. The clustering analysis was applied to TC events during the TC 

seasons of the training period (1979–2002). The number in the parentheses of each panel indicates the TC 

count of each cluster. Spectral analysis of TC genesis counts (blue line) is also shown in each panel. Solid 

and dashed red lines represent the red noise spectrum and its 90% confidence level, respectively. Vertical 

green lines mark the periods of 30 and 90 days, respectively. 



 

 

©2020 American Geophysical Union. All rights reserved. 

 

Figure 3. Basin-total TC count prediction skills of the hybrid model (left), statistical model (middle) 

and dynamical model (right). The prediction skill is evaluated by the (a, d, g) temporal correlation 

coefficients (TCC), (b, e, h) root-mean-square error (RMSE) and (c, f, i) area under the ROC curve (AUC) 

of the predicted TC counts against the observations during 2003–2013. Dark red and blue bars represent the 

predicted results using the observational predictors at the 0-day lead obtained from the sum of the C1–C7 

TC counts and from the direct prediction of TCall, respectively, which is the upper limit of the statistical 

model. Pink and light blue bars indicate the prediction results obtained from the sum of the C1–C7 TC counts 

and from the direct prediction of TCall, respectively. The black line (TCC = 0.42 and AUC=0.69) in (a, d, 

g) and (c, f, i) marks the climatological prediction skill. The red and blue numbers at the upper-right corner 

of (a–c) (using the same colors as the bars) represent the scores of statistical model fitting results (or the 

prediction of 0-day forecast lead) during the training period (1979–2002). 
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Figure 4 Observed (top panels) and predicted spatial patterns of TC frequency probability over the 

WNP at the forecast lead times of 10–35 days (six lower panels). (a, b) Two cases of high TC frequency 

(TCF) probability (units: %) over the Philippine Sea and South China Sea. (c–d) Two cases of predictions 

for recurving TCs. The TCF probability in each grid cell is defined as the TCF in each 5° × 5° box divided 

by the total TC count over the WNP. The PCC skill between predicted and observed TCFs is shown at the 

upper-right corner of each panel. 


