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ABSTRACT

Combining dynamical models with statistical algorithms is an important way to improve weather and

climate prediction. In this study, a concept of a perfect model, whose solutions are from observations, is

introduced, and a dynamical-statistical-analog ensemble forecast (DSAEF) model is developed as an

initial-value problem of the perfect model. This new analog-based forecast model consists of the following

three steps: (i) construct generalized initial value (GIV), (ii) identify analogs from historical observations,

and (iii) produce an ensemble of predictands. The first step includes all appropriate variables, not only at

an instant state but also during their temporal evolution, that play an important role in determining the

accuracy of each predictand. An application of the DSAEF model is illustrated through the prediction of

accumulated rainfall associated with 21 landfalling typhoons occurring over South China during the years of

2012–16. Assuming a reliable forecast of landfalling typhoon track, two different experiments are conducted,

in which the GIV is constructed by including (i) typhoon track only; and (ii) both typhoon track and landfall

season. Results show overall better performance of the second experiment than the first one in predicting

heavy accumulated rainfall in the training sample tests. In addition, the forecast performance of both ex-

periments is comparable to the operational numerical weather predictionmodels currently used in China, the

United States, and Europe. Some limitations and future improvements as well as comparisons with some

existing analog ensemble models are also discussed.

1. Introduction

Considerable progress has been made in numerical

weather prediction (NWP) during the past decades due

partly to a steady accumulation of scientific knowledge

and partly to technological advances in utilizing a variety

of observations and gaining computing power (Bauer

et al. 2015). Despite the steady progress, significant

forecast errors in today’s NWP models are still pres-

ent, especially in processing atmospheric statistical

properties that are not directly available from the

NWP outputs, such as tropical cyclone (TC) intensity,

and other mesoscale and smaller-scale features. Thus,

it is highly desirable to develop alternative approaches

to reducing NWP errors. To our knowledge, Koo

(1958a) was among the first to make such an attempt

by treating weather forecasts as both an ‘‘initial-

value’’ and ‘‘evolution’’ problem. He hypothesized

that the three-dimensional flow structures of a large-

scale baroclinic system at a given moment could be

reconstructed from the evolution of flow contours and

temperature fields before and after. In a subsequent

study, Koo (1958b) stressed the importance of using

historical data in NWP models to improve weather

forecasts. Later, Charney et al. (1969) pointed out that

historical data, even incomplete sometimes, are useful

for inferring the present atmospheric state inNWPmodels.

By transforming a solution of differential equations

problem into an extreme-value of functional-variational
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problem, Chou (1974) expanded the notion of the solu-

tion of differential equations by introducing the ‘‘gener-

alized solution’’ concept through incorporating past

observations into the temporal evolution of meteoro-

logical fields in NWP. Then, Chou (1986) explained

why a dynamical model and statistical methods can be

combined and how the combined dynamical-statistical

model could improve NWP. Briefly, such a dynamical-

statistical model can retain the physical significance of

the atmospheric processes described by the primitive

equations, while it adds the statistical properties of

certain quantities that cannot be accurately determined

dynamically.

In general, NWP errors come from the following two

types of sources: one from the model’s initial conditions

and the other from the model’s dynamical and physical

deficiencies. The former can be significantly reduced

through the application of sophisticated data assimi-

lation and ensemble forecasts, while the latter still

remains a challenging research subject (Chou 1974;

Lorenc 1986; Kalnay 2002). To reduce prediction er-

rors from model deficiencies, an important alternative is

to develop empirical strategies, in addition to increasing

model resolution and improvingphysical parameterizations.

Empirical strategies to reduce forecast errors may be

classified into (i) tendency error corrections, which can

bemade online by nudging themodel tendencies toward

observations during model’s integrations, and (ii) direct

forecast-error corrections, which can be made offline

after obtaining model forecasts (Danforth and Kalnay

2008a). The first empirical strategy is NWP model de-

pendent and has been widely used with various data

assimilation techniques in both the operational and re-

search communities (e.g., Kalnay 2002). Leith (1978)

developed a statisticalmethod inwhich a state-dependent

empirical correction is applied to the dynamical model

through minimizing the model tendency errors at every

time step. Subsequently, numerous studies have shown

improvements of NWP with different models by follow-

ing Leith’s methodology (e.g., DelSole and Hou 1999;

Danforth et al. 2007; DelSole et al. 2008; Danforth and

Kalnay 2008a,b; Yang et al. 2008).

The second strategy involves the diagnostic or prog-

nostic use of analogs with the assumption that two

similar flow patterns will likely remain similar for some

time to follow (Van Den Dool 1994). For the former,

Roebber and Bosart (1998) found a strong dependence

of observed rainfall structures on mesoscale details after

exploring their sensitivities to small variations in the

synoptic circulation. The latter has been applied to

predicting short-term climate fluctuations (Barnett and

Preisendorfer 1978; Livezey et al. 1994), and estimating

atmospheric predictability (Lorenz 1969). Further, Chou

(1979) suggested that if the forecast state could be re-

garded as a small perturbation superimposed on a his-

torical analog field, an analog-statistical technique can

be applied to the dynamical forecast field. By estimat-

ing the model’s tendency error with respect to the

historical analog state, Qiu and Chou (1989) obtained a

deviation equation in a quasigeostrophic model and

then illustrated the improvements of model forecast

performance. With the same philosophy, improve-

ments have been reported in medium-range to seasonal

forecasts by some studies (Huang et al. 1993; Bao et al.

2004; Yu et al. 2014). A similar methodology, applied to

four-dimensional variational assimilation to estimate the

initial tendency errors of analog samples, was proposed

independently by D’Andrea and Vautard (2000). In ad-

dition, some other studies have developed various strat-

egies to reduce model tendency errors (Johansson and

Saha 1989; Kaas et al. 1999; Klinker and Sardeshmukh

1992; Saha 1992; Yang and Anderson 2000).

The direct forecast-error corrections have been made

in several different ways. The first well-knownmethod is

called the model output statistics (MOS) that can gen-

erate the best possible local weather forecasts from

NWPmodel outputs using regression techniques (Glahn

and Lowry 1972; Klein and Glahn 1974; Lorenz 1977).

The other statistical methods, including singular value

decomposition (SVD) analysis (Feddersen et al. 1999)

and the postprocessor approach (Arpe and Klinker

1986; Chen and Lin 2006), also show skillful improve-

ments in NWP and numerical model simulations.

Meanwhile, Ren and Chou (2006, 2007), and Chou

and Ren (2006) proposed an approach of the analog

correction of errors (ACE) by combining a statistical

method with a dynamical NWP model. This approach

has the key idea that the current-state prediction errors

of a dynamic model can be statistically predicted (or

estimated) using the past model’s prediction errors with

respect to the historical (NWP forecast) analog states.

The ACE is defined by

E0(c
0
)5�

m

j51

E0(c
j
)/m5�

m

j51

[P
o
(c

j
)2P(c

j
)]/m , (1)

where c is the model state vector with c0 being the

initial value and m is the number of the best analogs

identified from the historical NWP model forecast data,

Po(cj), P(cj), and E0(cj) are the observation, the NWP

model forecast, and the error of the jth best analog, re-

spectively. Using the ACE approach, Sun et al. (2006),

Ren et al. (2014a), and Liu and Ren (2017) showed

improved El Niño–Southern Oscillation (ENSO) pre-

diction with different general circulation models, while

many other studies focused on improving monthly to
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seasonal forecasts (e.g., Zheng et al. 2009; Ren et al.

2009; Duan et al. 2011; Tan et al. 2012; Ren et al. 2014b;

Cheng et al. 2016). In addition, Gao et al. (2006) dem-

onstrated that theACE approach could improve daily to

monthly forecasts of atmospheric flows. Despite the

wide applications of the ACE approach in different

studies, its design is far from perfect and has consider-

able room for improvement.

It is worthwhile to mention some recent studies on the

hybrid analog-ensemble-based forecasts. Diomede et al.

(2014) investigated the calibration of limited-area en-

semble rainfall forecasts for driving discharge prediction,

and results revealed that the analog-based method has

the best performance among three different methods in

capably correcting position errors and spreading defi-

ciencies. Some other studies (e.g., Delle Monache et al.

2013; Nagarajan et al. 2015; Junk et al. 2015; Eckel and

Delle Monache 2016) focused on developing analog-

based ensemble schemes for ensemble model output

statistics (EMOS), and their results suggested that the

analog-based ensemble forecasts are better than tradi-

tional EMOS or MOS forecasts. Zhou and Zhai (2016)

developed an analog prediction system for persistent

extreme precipitation (PEP), and showed that it is ca-

pable of identifying approaching PEP events earlier and

yielding a more accurate forecast for the location and

intensity of PEP than direct model outputs at 3-day

and longer lead times in the Yangtze–Huai River valley.

Frediani et al. (2017) used an object-analog technique

with 15 ensemble members to forecast 89 storm events

in the northeastern United States during the period of

2004–13, and found that the object-analog forecasts are

competitively skillful compared to simpler analog tech-

niques. Elsberry and Tsai (2014) developed a situation-

dependent intensity prediction (SDIP) technique for

western North Pacific TCs, based on the mean intensity

changes from the 10 best historical track analogs. This

SDIP technique was then successfully applied by Tsai

and Elsberry (2015, 2016, 2017) to the other TC cases.

In the present study, we will present a new analog-

ensemble-based approach with more attention given

to the full use of historical observational data. Thus,

the purposes of this study are to (i) improve the ACE

approach by replacing historical model forecasts with

historical observations; (ii) develop a dynamical-statistical-

analog ensemble forecast (DSAEF) model by introducing

a concept of the perfect model; and (iii) demonstrate the

forecast credibility of the DSAEF model through its

application to the heavy rainfall forecasts associated

with 21 landfalling TCs.

The next section provides a review of the theory and

the current status of the ACE approach. Section 3 shows

the forecast improvements of the ACE approach by

taking an arithmetic mean of analogs from observations,

and how it is used as a backbone for the development of

the DSAEFmodel including the functionals of finding the

maximum or minimum values of ensemble members from

observations. Some fundamental differences between the

DSAEF model and the previous analog-ensemble-based

studies will be discussed. Section 4 presents an example

of applying the DSAEF model to heavy rainfall fore-

casts associated with 21 landfalling TCs. A summary and

conclusions are given in the final section.

2. Current status of the analog correction of errors

As presented byRen andChou (2006, 2007) and Chou

andRen (2006), theACE approach consists of two steps:

an inverse problem of estimating model errors, and the

ACE approach to correcting the errors. They are de-

scribed below separately.

a. An inverse problem of estimating model errors

In general, NWP is considered as an initial-value

problem for a set of partial differential equations

(PDEs). Mathematically, a current NWP model can

be expressed by 8><
>:

›c

›t
1L(c)

cj
t50

5c
0

5 0, (2)

where L is the model operator that characterizes the

NWPmodel,c the model state vector, and c0 the initial

value of c (see Chou and Ren 2006). Assuming that a

perfect model operator A exists, which is the ultimate

goal of current NWP model development, this perfect

model also involving a set of PDEs can be expressed by8><
>:

›c

›t
1A(c)

cj
t50

5c
0

5 0: (3)

A predictand P(c) should be exactly the same as the

observation P0(c) as in the perfect model (3). However,

in reality P(c) from the model (2) would always deviate

from P0(c) in the perfect model (3). The difference

betweenP(c) andP0(c) is defined as themodel forecast

error, and the differenced model (error) operator may

be expressed as A(c) 2 L(c) 5 E(c). Thus, (3) can be

rewritten as 8><
>:

›c

›t
1L(c)

cj
t50

5c
0

5 0, (4)
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where E(c) is an unknown model error operator that

cannot be accurately obtained.

Since available historical data are essentially the

special solutions to (3) or (4), methodologically, the

initial-value problem set of PDEs can be transformed

into an inverse problem that solves the PDEs by re-

writing the formulation of the forecast problem. In

doing so, the PDE solutions are known (i.e., from the

historical data), whereas the unknowns in (4) can be

determined by estimating the model error operator

E(c). This can be achieved by solving the inverse

problem through the ACE as described in the next

subsection.

b. The analog correction of errors (ACE)

A simple approach can be used to estimate E(c) in a

numerical model (Ren and Chou 2006). That is, given an

initial value c0, the predictand P(c0) and ‘‘(unknown)

observation’’P0(c0) can be obtained from themodel (2)

and perfect model (3), respectively. Then, the forecast

error is simply E0(c0) 5 P0(c0) 2 P(c0). Turning this

equation around gives P0(c0) 5 P(c0) 1 E0(c0), im-

plying that the model prediction problem boils down to

finding E0(c0).

In reality, historical observations can be used to con-

struct the model’s initial values ci(i5 1, 2, . . . , n) where

n represents the number of historical observations.

Following the same procedures as described above, the

predictand P(ci) can be obtained by solving the nu-

merical model (2), and the (known) observation P0(ci)

are obtained through the perfect model (3). Then,

E0(c
i
)5P

0
(c

i
)2P(c

i
) (5)

can be defined as the forecast error vector with respect

to the historical observational data used for model val-

idation, and its arithmetic mean, defined by (1), is con-

sidered as the systematic error (i.e., model bias).

Mathematically, the more observational data used

for a linear model system, the better are the forecast

results to be obtained, just like a pure statistical model.

However, this is not the case for a nonlinear model

system (such as the atmosphere and oceans) (Chou and

Ren 2006). Instead, the use of some optimally selected

data with certain relations (e.g., weather patterns or

storm tracks) is better than just the use of more obser-

vational data. Thus, for a specific forecast, an analog

forecast approach could be adopted, in which analogs

of the initial value c0 from historical observations are

first found and then used to make future forecasts (i.e.,

the ACE approach). Note that in this approach, NWP

models play an important role in producing realistic

model initial conditions, but are not needed to make

forecasts because of addingE0(c0), valid at T5 0, to the

forecast variables P(ci). In this sense, the ACE ap-

proach should provide more realistic forecasts than

those classical dynamical-statistical forecasts, in which

all possible historical data are typically used.

Assuming that the analogs of the initial value (c0)

from the historical observational data can be found,

defined as an analog (c1), thenwemaywrite the forecast

error vector as(
E0(c

0
)5E0(c

1
), when c

1
5c

0

E0(c
0
)’E0(c

1
), when c

1
5c

0
1c0

)
, (6)

where c0 5 c1 2 c0 is the error between the analog c1

and the initial value c0.

If many analogs cj 5 (j 5 1, 2, . . . , m) from the his-

torical data can be found, and they are all close to c0,

then finding the forecast error problem becomes

�
m

j51

E0(c
j
)/m

estimating
E0(c

0
) . (7)

Equation (7) implies that the forecast error vector can

be estimated from the mean forecast error with respect

to the top m analogs.

However, in estimating the forecast error vector

E0(c0) associated with themodel initial conditions, it is

often not possible to obtain a long history of model

forecasts for the predictands corresponding to the top

m analogs (e.g., due to the continued updates of vari-

ous model physics and initialization procedures). This

makes it difficult to implement the ACE approach in

these cases, which represents one of the limitations of

the ACE approach.

3. An improved analog prediction approach

a. Improving the ACE-based prediction by taking an
ensemble mean

Given the abovementioned limitation with the ACE

approach, it is necessary to search for an alternative way

to improve this approach. One way is to combine (7)

with an existing forecast, which gives a possible solu-

tion as

P
0
(c

0
)5P(c

0
)1E0(c

0
)

5P(c
0
)1�

m

j51

E0(c
j
)/m . (8)

With the definition of (5) for the forecast error cor-

rection vector from the historical data, (8) can be

rewritten as

estimating
����!
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P
0
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0
)5P(c

0
)1�

m

j51

[P
0
(c

j
)2P(c

j
)]/m

5P(c
0
)1P

O
(c

j
)2P(c

j
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where P(cj), the estimated mean predictand based on the

top m analogs, can be taken as an ensemble mean

forecast if the initial errorsc0
j 5c0 2cj(j5 1, 2, . . . , m)

are treated as initial perturbations. Then, the dif-

ference P(c0)2P(cj) should be small when c0
j 5

c0 2cj(j5 1, 2, . . . , m) are small enough. Thus, (9) can

be rewritten as

P
O
(c

0
)5P

O
(c

j
)1 [P(c

0
)2P(c

j
)]

’P
O
(c

j
) . (10)

That is, when the analog forecast error is taken as

an arithmetic mean solution [i.e., P(cj)], the to-be-

improved forecast should equal to the arithmetic

mean forecast PO(cj) based on the m observations

PO(cj) corresponding to the top m analogs cj ( j 5 1,

2, . . . , m) from the historical data.

It follows from the above analysis that the improved

ACE-based prediction is equivalent to the arithmetic

mean of an ensemble of m observations (i.e., the exact

solutions of a perfect model) that correspond closely to

the top m analogs in the historical data. In the next

subsection, we will show another form of the ensemble

function that can be used to improve the ACE-based

prediction with historical observational data by intro-

ducing a concept of the perfect model.

b. A dynamical-statistical-analog ensemble forecast
(DSAEF) model

As mentioned before, the atmospheric motion fully

satisfies the perfect model operator A(c) in the dynam-

ical model (3) or (4). Then, a forecast problem is to de-

termine how to obtain the predicted field vector PO(cO)

using the perfect model A from the initial value cO.

Figure 1 shows a schematic of the DSAEF model.

Beforemaking a forecast with theDSAEFmodel, wemay

assume the existence ofm analogs cj ( j5 1, 2, . . . ,m) to

the initial state vector cO, which is referred to as the

generalized initial value (GIV) in this study, and their

corresponding observations of the predictands P0(cj) (j5
1, 2, . . . , m) (i.e., the exact solutions of the perfect model

A). If the initial errors c0
j 5c0 2cj( j5 1, 2, . . . , m) in

the perfect model operatorA are treated as initial pertur-

bations, the predictands P0(c0) become a problem of en-

semble forecasts. That is, P0 (c0) is an ensemble of the m

forecasts or the m observations P0(cj) ( j 5 1, 2, . . . , m)

corresponding to the m initial perturbations added to the

perfect model operator A. This can be expressed by

P
0
(c

0
)5F[P

0
(c

1
),P

0
(c

2
), . . . ,P

0
(c

m
)], (11)

where F(X1, X2, . . . , Xm) is the ensemble function of

functional X1, X2, . . . , Xm. If the above ensemble

FIG. 1. Schematic diagram of the DSAEF model or perfect model, in which c is the model

state vector, and c0, which is mainly composed of observations, is the generalized initial value.

It is desirable to combine dynamical forecast products, which show acceptable forecast per-

formance in some key physical variables (e.g., TC track as described in section 4), with initial

condition analogs from historical observations. In addition, all them best analogs toc0 and the

corresponding m predictands are all from observations.
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function is an arithmetic mean, we obtain P0(c0)5
P0(cj), which is exactly (10).

For some forecast problems, the ensemble function,

F(X1, X2, . . . , Xm), may also take the functionals of

finding the maximum or minimum values of the en-

semble members. As an example, we will illustrate in

section 4, through an application of the DSAEF model

to rainfall forecasts associated with a landfalling TC

over South China, that the performance of the ensemble

function of ‘‘finding the maximum values’’ is better than

that of taking an arithmetic mean in the improved ACE

approach.

Figure 2 shows the flowchart of applying the DSAEF

model, which consists of three steps: (i) construct the

generalized initial value (GIV); (ii) identify analogs; and

(iii) produce an ensemble of predictands. In the first

step, the GIV includes not only initial conditions at T5
0 but also, if necessary, the subsequent temporal evo-

lution of main variables affecting the predictands in the

context of dynamical models, including the perfect

model (i.e., observations) and typical NWP models, and

statistical methods. Thus, the GIV in four dimensions

(4D; i.e., three dimensions at the initial state plus the

subsequent temporal evolution) may be composed of all

possible variables associated with the predictands, which

can be a prognostic meteorological variable such as

pressure and horizontal winds, an index such as the

East Asian monsoon intensity index or a weather

phenomenon such as TC tracks. Both the second and

third steps involve the application of statistical methods.

Identifying analogs consist of three substeps: (i) Identify

analogs for each variable, which can be done after

applying a similarity index, following Ren et al. (2018).

(ii) Identify analogs for the GIV. Obviously, when there

are more than one variable involved in the GIV, a cer-

tain order of variables for identifying analogs needs to

be considered. (iii) Determine the m best analogs.

Generally, the order of variables considered in step

(ii) may influence the final solution of the DSAEF.

Thus, it is desirable to obtain the best possible order

after comparing different ones, and then the m (m $ 1)

best analogs can be obtained. The third step consists of

two parts: identify the observations of predictands for

the m top analogs; and select a functional form for

an ensemble of them observations of predictands. After

completing the above three steps, a forecast using the

DSAEF model can be obtained.

One can see from the above description that in the

DSAEF model, ‘‘dynamics’’ implies the theoretical ba-

sis of the perfect model, while ‘‘statistics’’ includes the

generalized initial value, identifying analogs, and opti-

mizing an ensemble of predictands.

c. Comparison with some existing analog-based
statistical methods

Givenmany analog-ensemble-based statistical studies

in the literature, as reviewed in section 1, it is of interest

to discuss what unique features of the DSAEF model

are. First, its theoretical framework originates from the

GIV problem of a perfect model, which is the ultimate

FIG. 2. Flowchart of the dynamical-statistical-analog ensemble forecast (DSAEF) model.
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goal of NWPmodel development, whereas almost all the

existing analog-ensemble approaches do not have their

own theoretical frameworks. Moreover, the DSAEF

model can be used to not only make analog ensemble

forecasts but also showwhat physical implications of each

variable involved are.

In addition, theDSAEFmodel differs inmethodology

from some existing analog-ensemble approaches such as

the hybrid analog ensemble (AnEn) method (Delle

Monache et al. 2013; Nagarajan et al. 2015; Junk et al.

2015; Eckel and DelleMonache 2016). That is, (i) unlike

the AnEn method, the DSAEF model requires the

construction of a suite of appropriate initial conditions;

(ii) the AnEn method needs a long history of deter-

ministic NWP model forecast data from a frozen mod-

eling system, which may not be easy to obtain whereas

the DSAEF model searches optimal analogs directly

from historical observations (i.e., the so-called general-

ized initial value); (iii) in the AnEn method analogs are

sought independently at each location and for each lead

time, whereas in the DSAEF model analogs are sought

solely depending on the generalized initial value and for

all lead times; and (iv) although both the AnEn method

and the DSAEFmodel obtain ensemble forecasts from

historical observations (of predictands) with different

schemes, detailed procedures to find those optimal an-

alogs are quite different, as can be seen from an example

shown in the next section.

4. An application to landfalling TC
precipitation forecasts

a. How to apply the DSAEF model to landfalling TC
precipitation forecasts?

In this section, we illustrate the applicability of the

DSAEF model to predicting accumulated precipitation

associated with landfalling TCs. Figure 3 shows a flow-

chart on how to apply the DSAEF model to the pre-

diction of landfalling TC precipitation (LTP), hereafter

referred to as DSAEF_LTP model, following the proce-

dures listed in Fig. 2. The DSAEF_LTP model involves

four steps: obtaining TC track forecast, constructing

generalized initial value, identifying analogs, and finding

ensemble LTP of the analogs.

Obtaining accurate TC track forecasts is the first im-

portant step toward reasonable forecasts of LTP, since it

is a zero-order variable to determine the LTP distribu-

tion. After reviewing the previous studies of heavy LTP

and LTP forecasts, Ren and Xiang (2017) found that a

TC track with respect to different geographical locations

is also the key variable in determining the intensity of

LTP. Given considerable progress made during the past

decades in TC track forecasts (Rappaport et al. 2009;

Langmack et al. 2012; Cangialosi and Franklin 2016), it

is reliable to use the predicted TC tracks by today’s

NWPmodels as the first step in theDSAEF_LTPmodel.

In the second step of constructing generalized initial

value, it is highly desirable to include all the physical

variables that may influence LTP, including both TC’s

internal variables (e.g., intensity, size) and environ-

mental variables (e.g., vertical wind shear, subtropical

high, summer monsoon), many of which remain to be

examined. Their GIV includes not only their initial state

but also during the subsequent evolution period. For

example, both the observed and predicted tracks for a

target TC are treated as the generalized initial value. At

this stage of the model development, only two physical

variables, TC track and landfalling date, are incorpo-

rated into the GIV.

The third step involves identifying m top analogs for

the GIV. It consists of three substeps: identifying ana-

logs for each variable, identifying GIV’s analogs, and

determining the m best analogs, which are similar to

those in the second step of the DSAEF model (Fig. 2).

At present, the GIV includes both TC tracks and land-

falling dates. The former can be done by applying the TC

track similarity area index (TSAI) (Ren et al. 2018),

which is an objective index representing an enclosed

area bounded by two TC tracks with two lines con-

necting their initiating and ending points, while the lat-

ter is performed by taking seasonal similarities of the

TCs landfalling dates. The smaller the TSAI value is, the

greater similarities are the two TC tracks, where a null

value indicates the complete overlap of the two tracks.

Based on the TSAI obtained within a region of concern

that is referred to as the similarity region, it is straight-

forward to obtain the historical landfalling TCs in a

similarity order to the target TC. Then, seasonal simi-

larities can be divided into three landfalling types ac-

cording to the TC landfalling date as detailed in Table 1.

In the fourth step, we identify accumulated rainfall

amounts for each of the topm analogs, and then select a

functional form for an ensemble of the m analogs. The

former can be obtained by performing the objective

synoptic analysis technique (OSAT) (Ren et al. 2006,

2007), whose function is to partition TC precipitation

objectively. The latter can be obtained by taking the two

functional forms: ensemble mean and maximum values.

Inputting the above information into the DSAEFmodel

would yield the targeted TC’s accumulated rainfall field.

b. An application to LTP forecasts

With the above qualitative description, we may apply

the DSAEF_LTP model to the prediction of accumu-

lated rainfall associated with TCs that produced more

than 100mm of daily precipitation at the minimum one
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rain gauge station during 2012–16 in South China. There

are a total of 27 TCs, 17 of which occurring during 2012–

14 are used as a training sample, and while the re-

maining 10 occurring during 2015–16 are used as an

independent set of forecast samples for validation. In

doing so, historical data (1960–2016) used herein in-

clude the best track data from the TC database (http://

tcdata.typhoon.org.cn/en/zjljsjj_sm.html) of the China

Meteorological Administration (CMA) and the daily

rainfall data of 191 rain gauge stations in South China

(Fig. 4). Despite the above long historical archival,

real-time TC track forecast data of CMA/National

Meteorological Center (NMC) for the 27 TCs are also

used. In addition, the rainfall forecast data from the

European Centre for Medium-Range Weather Forecasts

(ECMWF) model, the Global Forecast System (GFS) of

the National Centers for Environmental Prediction, and

the global spectral model (T639) of CMA/NMC are used

FIG. 3. Flowchart of the DSAEF model for predicting landfalling TC precipitation (LTP)

(abbreviated as DSAEF_LTP model).
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herein for the purpose of comparison with the predicted

rainfall by the DSAEF_LTP model.

To see the sensitivity of the LTP forecasts to different

physical variables in the DSAEF_LTP model, the fol-

lowing two forecast experiments are conducted: exper-

iment 1 with TC track only, experiment 2 with both TC

track and landfalling date. The LTP forecast skill is

measured by the threat score (TS), which is the primary

operational-forecast verification metric in China, that is,

TS5
hits

hits1misses1 false alarms
. (12)

TSs for two accumulated rainfall thresholds (i.e., 100

and 250mm) are evaluated over all the surface rain

gauge network as given in Fig. 4. In this study, the

DSAEF_LTP model for experiment 2 has the following

seven parameters (see Table 1): initial date (P1), simi-

larity region (P2), threshold of the segmentation ratio

of a latitudinal extreme point (P3), threshold of the

overlap percentage of two similar TC tracks (P4), sea-

sonal similarity (P5), number of the most similar TCs

(P6) and ensemble scheme (P7). The above parameters,

except for seasonal similarity (P5), are also included in

the model for experiment 1. Considering different op-

tions for each parameter, as listed in Table 1, there are

34 560 (5 4 3 15 3 3 3 63 16 3 2) and 103 680 (5 43
153 33 63 33 163 2) different forecast schemes for

experiments 1 and 2, respectively. However, because

some TCs generate precipitation over land soon after

genesis, fewer values for parameters P1 and P2 can be

used, leading to a sharp decrease in the total number of

forecast schemes for the two experiments. To find the

best forecast scheme more meaningfully, we exclude six

short-tracked TCs with P1 5 1. So, the remaining 21

TCs, whose tracks are shown in Fig. 4, are adopted for

the tests. Then, 12 TCs during 2012–13 are selected as

the training sample whereas the rest 9 TCs during 2014–

16 are treated as the independent sample. Experiments 1

and 2, which have a total of 5184 and 15 552 forecast

schemes, respectively, are carried out to obtain the best

forecast scheme from the training sample, respectively.

After comparing the TS of the two experiments, the final

best one from the two best forecast schemes will be

applied to the independent forecast tests. During the

above tests, a target TC may have several TCs that oc-

curred prior as its analogs.

Figure 5 presents scatterplots of TSs for the training

sample of the accumulated rainfall amounts of $100

and$250mm from the 5184 forecast schemes associated

with experiment 1. Obviously, there are two groups of

TSs: one is the ensemble mean (gray dots) and the other

is the maximum value ensemble (blue dots) according to

the ensemble scheme selected at each station. It is evi-

dent from Fig. 5 that the maximum value ensemble is

much better than the ensemble mean for intense pre-

cipitation forecasts. By comparison, the two highest TS

values from the three NWP models, denoted by hollow

circles (s), have the values of TS2505 0.0237 by the

ECMWF model and TS1005 0.1312 by the GFS model.

Clearly, a total of 1048 out of 5814 schemes are better

TABLE 1. Parameters and the total number of forecast schemes of the DSAEF_LTPmodel, and the best forecast scheme for experiment 1

and experiment 2, respectively.

Parameters The way for getting value

Number of

values

The best scheme

of experiment 1

The best scheme

of experiment 2

Initial time (P1) 1200 and 0000 UTC within two days

prior to the LTP appearing on land

2 3 2 5 4 Second one Second one

Similarity region (P2) A parameter of TSAI: TC location

at the initial time (point A) and the

maximum lead time (point B) are the

first diagonal points; and point A can

be the TC locations at 12 h or 24 h

before the initial time, while point B

can be the TC locations at 12, 24, 36,

or 48 h before the maximum lead time

3 3 5 5 15 Sixth one Sixth one

Threshold (r0) of segmentation ratio

of a latitude extreme point (P3)

A parameter of TSAI with possible values

of 0.1, 0.2, or 0.3

3 Third one Third one

Threshold (c0) of overlap percentage

of two TC tracks (P4)

A parameter of TSAI with possible values

of 0.9, 0.8, 0.7, 0.6, 0.5, or 0.4

6 First one First one

Seasonal similarity (P5) Its value can be the whole year, May–Nov

and Jul–Sep

3 Third one

Number of the most similarity TCs (P6) Its values range 1–16 16 Sixth one Seventh one

Ensemble prediction scheme (P7) Its value can be the ‘‘mean’’ or ‘‘the

maximum’’

2 Second one Second one

Total number of schemes 4 3 15 3 3 3 6 3 3 3 16 3 2 103 680
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than the NWP forecasts, as they appear in the first

quadrant encompassed by the two inner dashed axes.

Moreover, the red dot indicates the highest value of

TS250 1 TS100 that gives the best forecast scheme. See

Table 1 for the values of the six parameters associated

with the best scheme in this experiment.

Following the same procedures as described above,

we can find the best forecast scheme for experiment 2. It

is evident from Fig. 6 that a total of 3087 schemes out of

15 552 ones perform better than the NWP forecasts

in predicting the accumulated precipitation of $100

and $250mm. Similarly, the best scheme should have

the highest TS value of TS250 1 TS100 (i.e., as indicated

by a red dot). See Table 1 for the values of the seven

parameters associated with the best forecast scheme for

experiment 2.

A comparison of the parameter values used for the

two best schemes between experiments 1 and 2 reveals

that (i) five of the six parameters in experiment 1 (i.e.,

P1, P2, P3, P4, and P7) are the same as those in experi-

ment 2; and (ii) P6, the number of analogs, is 6 and 7

in experiment 1 and 2 (see Table 1), respectively.

Furthermore, a comparison of the TSs by the two best

schemes of the DSAEF_LTP model between experi-

ments 1 and 2 shows that adding P5 (i.e., seasonal

similarity) tends to improve the overall performance of

the best forecast scheme. That is, experiment 2 has the

summed TS of TS250 1TS100 5 0.2941, where TS250 5
0.0833, and TS250 5 0.2108, while experiment 1 has the

summed TS of TS250 1TS100 5 0.26, where TS250 5
0.0662, and TS100 5 0.1938.

Using the best scheme of experiment 2 to represent

the DSAEF_LTP model, Fig. 7 compares its mean

forecast skills to those of the three NWP models for the

independent sample of years 2014–16. Results show that

the summedTS (i.e., TS2501TS100) of theDSAEF_LTP

model is comparable to that of the NWP models, with

the GFS being the best one (0.3094), followed by the

DSAEF_LTP (0.2406), the ECMWF (0.2182), and the

T639 (0.2065). In terms of the individual TS250 and

TS100, the DSAEF_LTPmodel is ranked the second and

third, respectively. Similar forecast skills are true for the

best scheme of experiment 1 (not shown).

Figure 8 compares the individual TS250 associated

with the 9 targeted TCs during 2014–16 from the four

different models. Note that the three NWP models

have TS250 $ 0 only for the most intense rain-producing

TC(1410), indicating that they tend to underpredict

FIG. 4. Horizontal distribution of 191 rain gauge stations over

SouthChina and tracks of the 21 targeted tropical cyclones adopted

for the study. Note that all these TCs have produced the maximum

daily rainfall of more than 100mm over South China, although a

few TC tracks do not go through the region.

FIG. 5. Scatterplots of threat scores (denoted by TS250 and TS100,

respectively, where the subscripts, ‘‘250’’ and ‘‘100’’, refer to as the

accumulated precipitation of$250 and$100mm, respectively) for

the 1048 forecast schemes associated with forecast experiment 1

for the training sample of years 2012–13. Gray and blue dots in-

dicate the ensemble ‘‘mean’’ and ‘‘maximum,’’ respectively. The

hollow circle (s) is used to denote the LTP forecast TS values by

the three NWP models (i.e., ECMWF, GFS, and T639), and the

intersect of two inner dashed axes indicates the highest values of

TS250 5 0.0237 from the ECMWF model forecasts and TS100 5
0.1312 from the GFS model forecasts.
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intense rainfall due partly to the use of coarse grid reso-

lution. Meanwhile, theDSAEF_LTPmodel has TS250$ 0

for three cases: TC(1410), TC(1418), and TC(1522). In this

case, why is the DSAEF_LTP model not ranked the

first? A further analysis of the results reveals that our

DSAEF_LTP model tends to overpredict the coverage

of more intense precipitation (i.e., $250mm), namely

giving higher false alarms (i.e., 9) than those of the NWP

models (i.e., 5), as shown by thin color bars on the hor-

izontal axis in Fig. 8. As a result, the mean TS for the

DSAEF_LTP is smaller than those of the GFS and

T639 shown in Fig. 7. The false alarms with TS 5 0,

causing the lower ranking of the DSAEF_LTP model

as calculated by (12), can be attributed partly to the

ensemble prediction scheme P7 being ‘‘the maximum’’.

The TS100 from the fourmodels are compared in Fig. 9,

revealing that all the four models have good average

TS100 values (i.e., 0.23–0.40) for intense rain-producing

TCs (i.e., with precipitation $250mm), whereas much

smaller values (i.e., 0.056–0.094) are obtained for TCs

with precipitation between 100 and 250mm.

It is apparent from the above analyses that the

DSAEF_LTP model can provide numerous possible

schemes for a given set of parameters and available

historical data, and that the best scheme could be ob-

tained through a training sample. This differs from

previous statistical or analog studies, in which only

one forecast scheme could be obtained. In particular,

in most climate prediction studies and the model out-

put statistics (MOS) for objective weather forecasts, a

training test needs to be conducted in order to

determine a statistical relationship in the form of a re-

gression equation between a predictand and certain

variables. In this sense, the best scheme in our model is

equivalent to ‘‘the regression equation.’’

5. Summary and conclusions

In this study, we have (i) presented an innovative way

to improve the prediction of certain meteorological

variables with the ACE approach by taking an arithmetic

mean of the observations corresponding to the m best

historical analogs; (ii) developed the DSAEF model

based on the concepts of a perfect model and its initial

perturbations, after considering different ensemble

functional forms, and (iii) demonstrated the applica-

bility of the DSAEF model to LTP forecasts of 21 TCs

occurring in South China.

Our work suggests that although a perfect forecast

with today’s dynamical models is impossible to obtain,

combining dynamical forecasts with initial condition

analogs from historical observations to a maximum

possible extent constitutes an innovative way to re-

duce forecast errors. The DSAEF model developed

herein is such a promising approach along this direction,

in which analogs from historical observations play an

important role in determining forecast accuracy.

Despite the successful application of the DSAEF

model, there are several issues on its general applica-

tions that are worth discussing. First, it is necessary for

the initial perturbations to be as small as possible.

FIG. 7. Comparisonof the threat scores for predicting accumulated

intense precipitation ($250 and $100mm) by the DSAEF_LTP

model and the three NWP models (i.e., ECMWF, GFS, and T639)

for the independent sample of years 2014–16.
FIG. 6. As in Fig. 5, but for the 15 552 forecast schemes associated

with forecast experiment 2.
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This implies that having sufficient analogs from histori-

cal observations is critical, and that the more analogs,

the better forecasts are. Second, appropriate construc-

tion of the GIVs is the key to forecast success with the

DSAEF model. A useful strategy is to consider the

physical implications of the generalized initial value

associated with predictands and the easiness to find their

corresponding analogs. Our experience suggests that

(i) as many key physical factors associated with the

predictands as possible be included as the main body of

the GIV; (ii) the GIV be mainly composed of historical

observations, and well-predicted key physical vari-

ables such as TC tracks; and (iii) the GIV be limited

to a (small) key region rather than too large an area. In

FIG. 8. Comparison of the threat scores of the accumulated precipitation of $250mm as-

sociated with 9 targeted TCs during 2014–16 by the DSAEF_LTP model (red column) to the

ECMWF (green column), GFS (purple column), and T639 (blue column). The horizontal axis

stands for TS5 0, black solid line represents the observedmaximum accumulated precipitation

for individual TCs, and thin-dashed line denotes the threshold of 250mm. Note the notations

used for the chronological order of TCs: for example, 1410 denotes the 10th TC in 2014, sim-

ilarly for the other 8 TCs. Note also that false alarmswith TS5 0 are representedwith thin color

bars on the horizontal axis.

FIG. 9. As in Fig. 8, but for the accumulated precipitation of $100mm.
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this regard, Van Den Dool (1994) also pointed out that

finding an analog over a small area is much easier than

that over a large one. Third, since the quality of

identified analogs depend critically on the degree of

analogs, a loose analog criterion for one variable may

yield a few more analogs than those with a strict one.

Thus, an effective strategy is to design different analog

criteria for different variables. Fourth, it is always a good

idea to test different functional forms for an ensemble of

predictands and then choose the best one. Some com-

mon functional forms may include an ensemble mean,

an extreme (maximum or minimum) value, or a certain

percentile.

As demonstrated in section 4, a successful strategy

for applying the DSAEF model to LTP forecasts is to

include as many relevant variables as possible to the

GIV in order to improve forecast skill. For example,

the DSAEF_ LTPmodel with the two variables of ‘‘TC

track’’ and ‘‘landfalling date’’ shows better perfor-

mance than the model with only one variable of ‘‘TC

track.’’ In addition, an important step to obtain a suc-

cessful application of the DSAEF model is to find the

best forecast scheme. Thus, it is necessary to figure out

how many basic schemes should be and how they

could be optimized to yield the best forecast scheme.

Consider a case with k ‘‘similarity’’ parameters plus the

other ones (e.g., the initial time and the number of

analogs). If the DSAEF model has a total of K pa-

rameters (K. k) and if the number of values for the jth

parameter pj( j 5 1, 2, . . . , K) is nj, then the number of

schemes is n1 3 n23 . . .3 nK. To find the best scheme, a

reasonableway is to use one of themost important indices

to evaluate the forecast performance for each scheme,

and thendetermine the best one based on the evaluations.

It should be mentioned that the present study is just a

good start to the application of the DSAEF model to

heavy LTP forecasts. There is considerable room for

improvements with the DSAEF_LTP model. This could

be achieved mainly by two ways: one is incorporating

more variables associated with TC internal characteris-

tics (e.g., intensity and size) and environmental condi-

tions (e.g., vertical wind shear, relative humidity, and

summer monsoon), another one is improving values of

the parameters in the model such as similarity region

(P2) and ensemble prediction scheme (P7). TheDSAEF

model could also be applied to the other meteorological

problems (e.g., intense horizontal winds in TCs, regional

weather conditions, some of which will be explored in our

future studies). In particular, we wish to mention that

with its encouraging performance shown herein and our

other recent studies (i.e., Ren et al. 2018; Ding et al. 2019;

Jia et al. 2020), theDSAEF_LTPmodel has nowbeen put

under operational heavy precipitation foresting tests for

landfalling TCs at the CMA/NMC and the Hainan

Meteorological Observatory of China. The related re-

sults will be reported in future studies.
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