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 Effects of anthropogenic activity emerge as an important factor to increase the summer 

hot drought events over northeastern China 

 The frequency and the intensity of summer hot drought events over northeastern China 

will be further strengthened in the future This study investigates the influence of 

external forcings on the various summer hot drought events (SHDEs) over northeastern 

China (NEC). SHDEs are represented by the probability-based index (PI), which 

considers precipitation and temperature anomalies. The results show that SHDEs over 

NEC increased from 1961 to 2005, and the experiments for historical forcing (ALL), 

increased greenhouse gases (GHG) emission forcing, and anthropogenic forcing (ANT) 

can largely reproduce the spatial and temporal features of the trends of SHDEs over 

NEC. Based on the optimal fingerprinting method, the impact of increased 

anthropogenic activities can be detected at the 90% confidence level. In addition, the 

attributable changes of PI in response to GHG and ANT forcings resemble the 

observation, implying that the increasing trends of SHDEs over NEC are primarily 

attributed to the increased anthropogenic activity. Furthermore, the occurrence 

probability of SHDEs over NEC will be further increased under different 

Representative Concentration Pathways in the future. Additional strict control 

regulations on GHG emissions are thus suggested to mitigate its impact on regional 

climate changes. 
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1 Introduction 

Extreme climate and weather (extreme precipitation, flood, heat waves, drought, etc.) have 

great impacts on the economy, agriculture, and human lives and are of great concern to the 

public and the government (Chen et al., 2012; Wang et al., 2016; Qiu et al., 2017; Wang et al., 

2018). Because northeastern China (NEC) is the granary of the country, droughts often lead to 

a serious deficiency in water supply and a severe reduction in crop production, which have 

further influences on the quality of human life and result in numerous economic losses. For 

example, the extreme summer hot drought event that occurred in 2016 over NEC led to severe 

yield reductions and economic losses reaching up to CNY15.61 billion (Li et al., 2018a). Thus, 

it is highly important to understand the changing characteristics of summer hot drought events 

(SHDEs) over NEC and its associated possible mechanisms.  

 In general, the SHDEs over NEC are characterized by higher temperature and less 

precipitation. To date, numerous studies have focused on the changing features of the summer 

precipitation and surface air temperature (SAT) over NEC on different time scales. In terms of 

the interannual variations, changes of the sea ice concentration (SIC) over the Arctic Ocean 

and Greenland (Wu et al., 2009), the north Atlantic SST (Wu et al., 2011; Chen et al., 2018; 

Zhao et al., 2019), the Indian subcontinent (Zhang et al., 2019a) and the Indian Ocean (Gao et 

al.; Sun et al., 2019), the Tibetan heating (Zhang et al., 2018), the Pacific Ocean (Zhu et al., 

2019), and the weakened East Asian summer monsoon (EASM) (Sun et al., 2017) may be 
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linked to the variations of summer precipitation and SAT over NEC. On the interdecadal time 

scale, summer precipitation is observed to significantly decrease since the end of the 1970s 

(Ding et al., 2008; Liu et al., 2011; Sun et al., 2015), which might be partially linked to the 

abrupt decrease of preceding winter and spring snows over the Tibetan Plateau (Ding et al., 

2009). In addition, the summer precipitation over NEC also experienced an interdecadal 

decrease after the end of the 1990s (Zhao et al., 2018). Similar to changes in precipitation, the 

summer SAT over NEC experienced a shift toward a warm phase in the early 1990s (Chen and 

Lu, 2014). Additionally, Zhang et al. (2019b) suggested that the Eurasian warming may cause 

the extreme drought in northeastern China in the recent two decades. For the long-term trend, 

many studies have suggested that the summer precipitation over NEC has a decreasing trend 

(Qian and Lin, 2005; Zhai et al., 2005) while SAT presents an increasing trend (Feng et al., 

2015) over the past half-century. Hence, previous studies have deeply investigated the features 

and causal factors of changes in summer precipitation and SAT over NEC on different time 

scales from the perspective of the internal climate system (Wang and Zeng, 2018). 

In terms of the changes in drought events over NEC, Yang et al. (2016) indicated that 

drought (represented by the Standardized Precipitation Index) over NEC has become 

increasingly severe, mainly resulting from the decreased precipitation. When considering the 

impact of precipitation and temperature simultaneously, Zou et al. (2005) suggested that the 

drying trend over NEC was significant during the period from 1951 to 2003 based on the 
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Palmer Drought Severity Index. Yu et al. (2014) also indicated that the persistent drought event 

over NEC became increasingly severe during the period from 1951 to 2010 based on the 

Standardized Precipitation Evapotranspiration Index (SPEI). In addition, Chen and Sun (2015a) 

suggested that the drought events have increased over NEC on the centennial scale, and the 

severe drought events were closely related to higher air temperature based on the results of 

SPEI. In general, all of these indices coincidently presented an increasing trend in summer 

drought events over NEC. In addition to these drought indices, another index based the concept 

of the multivariate copula is introduced (Michele et al., 2005; Salvadori and De Michele, 2010; 

AghaKouchak et al., 2014; Cheng et al., 2016). This drought index uses a probability-based 

index that considers the joint effect of precipitation deficiency and high SAT, which is easier 

to identify the severity of hot drought event and has been used to investigate the influence of 

the internal natural forcing (Barents Sea ice decline in March) on the variations of SHDEs over 

NEC on the interannual scale (Li et al., 2018a). Therefore, this probability-based index could 

be further applied to investigate the long-term changes in SHDEs over NEC as well as the 

potential contributions of the strengthened human activities. 

Human influence has been detected in the changes in drought events over different regions 

around the world, such as central and eastern China (Ma et al., 2017b), the Tibetan Plateau (Ma 

et al., 2017a), southern China (Chen and Sun, 2017b), East Africa (Lott et al., 2013), and 

California (Wang et al., 2014; Diffenbaugh et al., 2015; Williams et al., 2015; Seager et al., 
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2017). However, the role of anthropogenic activity in the increased summer hot droughts over 

NEC remains unclear. Therefore, the focuses of this study are listed as follows: What is the 

changing characteristic of summer hot droughts over NEC? Whether human activities have 

imposed detectable impacts on the increased SHDEs over NEC? How severe the SHDEs over 

NEC will be in the future?  

The outline of this study is listed as follows. Section 2.1 shows the datasets used in this 

study. Section 2.2 describes the methods, including the multivariate copula method, the 

ensemble empirical mode decomposition (EEMD) method, and the optimal fingerprinting 

analyses. Section 3 first presents the analyses regarding the performance of different external 

forcing simulations from the Coupled Model Intercomparison Project phase 5 (CMIP5) models 

to reproduce SHDEs over NEC. After that, the detection and attribution analyses of changes in 

NEC in response to different external forcings are conducted. Besides, the future changes of 

SHDEs under different Representative Concentration Pathways (RCP) are further discussed. 

Section 4 provides detailed discussions concerning anthropogenic activity to influence the 

increased SHDEs over NEC and Section 5 finally presents a brief conclusion.  

2 Data and Methods 

2.1 Data 

 An observational gridded monthly precipitation and SAT dataset (referred to as CN05.1) 

developed by Wu and Gao (2013) is applied in this study. CN05.1 was produced by 
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interpolation of data from 2416 stations across China during the period from 1961 to 2016 

using the “anomaly approach” method (Xu et al., 2009, Wu and Gao, 2013), which has a 

horizontal resolution of 1° × 1°.   

 To conduct optimal fingerprinting analyses, the monthly precipitation and SAT datasets 

from CMIP5 are also used and are obtained from the website of https://www.ipcc-

data.org/sim/gcm_monthly/AR5/Reference-Archive.html. To investigate the influences of 

external forcings on the variations of SHDEs over NEC, multi-model simulations from 

different external forcings during the period from 1961 to 2005 are used, including historical 

anthropogenic plus natural forcing (ALL), natural forcing (NAT), and greenhouse gases forcing 

(GHG). In this study, the anthropogenic impact (ANT) is calculated as ALL minus NAT (Zhang 

et al., 2013) and that the other anthropogenic forcing (OA) such as aerosol emissions, land use, 

etc. can be obtained as ANT minus GHG (Li et al., 2017). For the purpose of detection and 

attribution analyses, the preindustrial unforced control (CTL) simulations are also selected. 

Here, five chunks of non-overlapping 45-year datasets (225 years in total) of precipitation and 

SAT are selected for each model. In addition, the simulations under the RCP4.5 and the RCP8.5 

scenarios are used to investigate future changes in SHDEs over NEC. In summary, fourteen 

climate models that include the simulations of ALL, GHG, NAT, CTL, and future scenarios are 

selected. The detailed information on these models is listed in Table 1. To give equivalent 

weight to each model, the ensemble means for each model is obtained and then the multi-model 

http://www.ipcc-data.org/sim/gcm_monthly/AR5/Reference-Archive.html
http://www.ipcc-data.org/sim/gcm_monthly/AR5/Reference-Archive.html
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ensemble median (MME) of the chosen models are calculated when needed (Li et al., 2017). 

For convenience, all of the datasets derived from CMIP5 are bi-linearly interpolated onto 1° × 

1° grids as CN05.1, and then the seasonal mean (June, July, and August) of those datasets are 

calculated. 

 

2.2 Methods 

2.2.1 Multivariate copula method 

 In our study, the multivariate copula method is used to identify the SHDEs over NEC. The 

traditional copula method is proposed by Salvadori and De Michele (2010), in which the joint 

cumulative distribution function (CDF) of precipitation (𝑋1 ) and temperature (𝑋2 ) can be 

defined as 

 𝐹(𝑥1, 𝑥2) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2)) ,     (1) 

where 𝐹1(𝑥1) = 𝑃( 𝑋1 ≤ 𝑥1)  and 𝐹2(𝑥2) = 𝑃( 𝑋2 ≤ 𝑥2)  are the relevant CDFs. Here, 𝑥1 

and 𝑥2 represent the thresholds of precipitation and temperature, the value of 𝐹(𝑥1, 𝑥2) can 

be understood as the case that precipitation and temperature are higher bounded (corresponding 

to low precipitation and low temperature). 

Further, Salvadori et al. (2013) proposed the joint survival method to better calculate the 

return period. Based on this method, the condition of precipitation deficiency and high 
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temperature can be considered simultaneously. This joint survival function is defined as 

𝑃𝐼 = 𝐶̂(𝐹̄1(𝑥1), 𝐹̄2(𝑥2)) = 𝑃(𝑋1 > 𝑥1, 𝑋2 > 𝑥2),    (2) 

where 𝐹̄𝑖 = 1 − 𝐹𝑖 = 𝑃( 𝑋𝑖 > 𝑥𝑖). In the case of low precipitation and high temperature, 𝑋1 

represents the original precipitation time series multiplied by –1, and 𝑥1  represent the 

threshold of precipitation multiplied by –1 correspondingly. Here, the cumulative distribution 

functions of summer precipitation (which has been multiplied by –1) and SAT over NEC are 

calculated based on the Kernel smoothing density estimator. Then, the corresponding PI can 

be calculated using the t copula method, which is used to fit the cumulative probability of 

temperature and precipitation (https://ww2.mathworks.cn/help/stats/copularnd.html). This t 

copula method considers the joint survival function of precipitation (𝐹̄1(𝑋1)) and temperature 

(𝐹̄2(𝑋2)) and hence can identify the hot drought events. Accordingly, the values of PI vary 

between zero and unity, representing the severity of hot drought events. Relatively high (low) 

thresholds for precipitation (𝑥1) and temperature (𝑥2) would result in a relatively small (large) 

value of PI, which represents a more (less or no) severe hot drought event. Thus, a period (e.g., 

1995-2005) with increased small PI events denotes a period with increased hot drought events 

(Fig. S1).  

Based on the PI, the corresponding survival Kendall’s return period (𝜅̄𝑥) can be obtained 

according to Salvadori et al (2013), where a large return period suggests a severe small-

probability hot drought event. Given a certain pair of 𝑋1 and 𝑋2, there exists a unique isoline 
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that shares the same probability 𝑡  (𝑡 ∈ 𝑃𝐼, 𝑡 ∈ [0,1] ) (see the isolines in Figure 1). The 

corresponding survival Kendall’s return period (𝜅̄𝑥) is defined as 

𝜅̄𝑥 =
1

1−𝐾̄(𝑡)
,   (3) 

where t is a certain probability level of PI, and 𝐾̄(𝑡) is obtained by  

𝐾̄(𝑡) = 𝑃(𝐹̄(𝑋1, 𝑋2) ≥ 𝑡) = 𝑃(𝐶̂(𝐹̄1(𝑋1), 𝐹̄2(𝑋2)) ≥ 𝑡) = 𝑃(𝑃𝐼 ≥ 𝑡).   (4) 

Therefore, the probability level of PI is negatively correlated with 𝜅̄𝑥, and a small value 

of PI corresponds to a severe hot drought event (longer return period, see the pentagram in 

Figure 1). Figure 1 shows an illustration of the concurrent return periods of precipitation 

deficiency and high temperature over northeastern China in JJA during 1961–2005. Here, the 

blue dots give the anomalous precipitation and temperature for each year and the isolines 

represent the corresponding survival Kendall’s return period. For example, the hot drought 

event occurred in 2000 is the severest year (with highest temperature level and second-lowest 

precipitation level) during the period of 1961–2005, which has the lowest PI value (0.015) 

(Figure S1) with a corresponding survival Kendall’s return period of 60 years (Figure 1). The 

severity of hot drought events is easily identified based on PI. Thus, the PI index is used to 

analyze the hot drought event in the following sections.  

2.2.2 Ensemble empirical mode decomposition method 
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 In this study, the EEMD method (Wu and Huang, 2009) is employed to analyze the 

changes in PI at different time scales. Based on this method, the components with truly physical 

meaning can be extracted from the signal. The steps to obtain different components of 𝑐𝑗(𝑡) 

is summaries as below: (1) Add a random white noise signal to the original series; (2) 

decompose the series into several intrinsic mode functions (IMFs); (3) repeat steps (1) and (2) 

with different white noise series; (4) obtain the IMF components (Wu and Wang, 2009). 

According to equation (5), the MME of the PI series can be divided into six IMF components 

from a high frequency to a low frequency of 𝑐𝑗(𝑡) in this study 

𝑥(𝑡) = ∑ 𝑐𝑗(𝑡) + 𝑟𝑛(𝑡)𝑛
𝑗=1 , (5) 

where ( )nr t  is the residual term, 𝑛 denotes the total number of IMF components (n=6). Here, 

the IMFs are oscillatory functions with varying amplitude and frequency, and the number of 

extrema and zero-crossings must either be equal or differ at most by one for a single IMF. 

Based on the EEMD method, the variability part of PI is obtained by summing the first five 

components (e.g. high-frequency signals, annual signals, and interdecadal signals, etc.) while 

the last component is recognized as the trend part. 

2.2.3 Optimal fingerprinting method  

 To detect and attribute changes in hot drought events over NEC (represented by PI), the 

optimal fingerprinting method is introduced (Zhang et al., 2013). The optimal fingerprinting 

method is based on the concept of the total least square method (Ribes et al., 2013). In equation 
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(6), y represents the observational historical PI values, 𝑥 is the climate response to the external 

forcing considered (the PI values simulated by the MME of a certain external forcing including 

ALL, GHG, NAT, ANT, and OA), 𝛽 is the scaling factor that adjusts the magnitudes of the 

fingerprints to best match the observation, and 𝜀 is the Gaussian random residual term relevant 

to the internal variability. To conduct the fingerprinting analysis, the CTL simulations with 30 

segments of 45-year non-overlapping PI datasets are divided into two samples (six models with 

five chunks respectively, which are chosen based on the criteria in Section 3.1). Half of these 

segments are used to prewhitening the data, and the other half segments are used to calculate 

the 5%–95% uncertainty of regression coefficient relating to 𝛽 by regressing the observational 

PI onto model simulated PI series (𝑥) based on the MME of ALL, GHG, NAT, ANT, and OA. 

More detailed information can be found in Allen and Stott (2003).   

𝑦 = 𝛽𝑥 + 𝜀,   (6) 

To investigate the attributable changes in PI, trends for the MME of PI are first multiplied 

by the corresponding scaling factors (5%–95% marginal of 𝛽 ), and then they are further 

multiplied by 45 (corresponding to the 45-year period) for each individual external forcings. 

The observed changes in PI are calculated by multiplying the trend of the observed PI (the 90% 

uncertainty range of trend is estimated by the total least square method) by 45 (corresponding 

to the 45-year period).  
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3 Results 

3.1 Performance evaluations in the simulation of SHDEs  

Before detecting and attributing historical changes in SHDEs over NEC, the model 

capability in reproducing trends of summer precipitation and SAT over NEC is evaluated. 

Figure 2 shows the observational trends of SAT (Figure 2a) and precipitation (Figure 2b) from 

1961 to 2005 over NEC based on CN05.1. Generally, the trend of SAT increased significantly 

over NEC while the trend of precipitation decreased over most regions of NEC during the 

period from 1961 to 2005. Figure 3a shows the trends of SAT from 1961 to 2005 for the 

individual historical simulations as well as the MME. There is an increasing trend of SAT for 

most of the models (except for MIROC-ESM-CHEM, MIROC-ESM, and MRI-CGCM3). For 

precipitation, only eight out of fourteen models have a similar decreasing trend over most 

regions of NEC from 1961 to 2005 (Figure 3b). It seems that there exists large diversity in the 

long-term trend of the SAT and precipitation over NEC among different models, and these 

biases might be influenced by the internal climate variability (Santiago et al., 2016), the internal 

model variability (Giorgi and Bi, 2000), the choices of the model schemes (Wang and Sun, 

2018), and so on. Thus, six models (bcc-csm1-1, CNRM-CM5, CSIRO-Mk3-6-0, GFDL-CM3, 

GFDL-ESM2M, HadGEM2-ES) that simultaneously well reproduce the trend of SAT and 

precipitation over NEC (see the bold lettering models in Table 1) are chosen for further analyses. 

Figure 4 shows the observation and the historical simulations for the trends of PI from 
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1961 to 2005 over NEC. SHDEs over NEC tended to increase significantly (corresponding to 

decreasing PI). The increasing trend of SHDEs over NEC is significant at the 90% confidence 

level based on the Mann-Kendall non-parametric test, largely affected by the increasing trend 

of surface temperature (Figure 2a) rather than precipitation (the trend of summer precipitation 

over most parts of NEC are statistically insignificant, which cannot pass the 90% confidence 

level). Given that SHDEs over NEC often cause great economic and agricultural losses, the 

features of SHDEs over NEC and the possible influences from different external forcings are 

further examined in the following analysis. Overall, the decreasing trend of PI over NEC 

(corresponding to an increase in SHDEs) can be captured by most of the models (significant at 

the 90% confidence level based on the Mann-Kendall non-parametric test). The spatial pattern 

correlations between the observation and the individual ALL experiment are larger than 0.83. 

In addition, the spatial correlation for the trend of PI between MME and the observation reaches 

0.95, which is higher than most of the models.  

Similar to the ALL forcing, the results based on ANT forcing simulate well the decreasing 

trend of PI over NEC (Figure 5a-g). In particular, the spatial correlations between observation 

and individual models are all greater than 0.65. Additionally, the spatial correlation between 

MME and observation reaches 0.93, largely resembling the observation. Consistent with 

historical simulation and the ANT forcing, the GHG forcing also presents a good resemblance 

to observation in terms of the trends of PI over NEC (Figure 5h-n). The spatial correlation 

http://vsp.pnnl.gov/help/Vsample/Design_Trend_Mann_Kendall.htm
http://vsp.pnnl.gov/help/Vsample/Design_Trend_Mann_Kendall.htm
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between individual models and observation are greater than 0.73, with a spatial correlation 

between MME and observation reaches 0.95. Unlike ALL, GHG, and ANT forcings, the results 

based on NAT (Figure S2) and OA forcings (Figure S3) show less similarity to the observation. 

For the NAT forcing, most of the individual models and the corresponding MME present an 

increasing trend of PI, which is opposite to the observation. For the OA forcing, almost none 

of the individual models and MME show a spatial pattern similar to the observation, except for 

CSIRO-Mk3-6-0, which has a decreasing trend of PI with a spatial correlation of 0.89 with 

observation. 

 In addition to the spatial patterns of PI trends during the period from 1961 to 2005, we also 

investigate the spatially averaged temporal variations of PI over NEC using the cosine of 

latitudes as weight. Based on the EEMD method, the original temporal series (Figure 6a) can 

be divided into two components, including the trend part (Figure 6b) and the variability part 

(Figure 6c). The results suggest that the PI over NEC has interannual and interdecadal 

variations (Figures 6a, c) and a decreasing trend (Figure 6b) during the period from 1961 to 

2005. The decreasing trend of PI can be satisfactorily captured by the MMEs from simulations 

of ALL, GHG, and ANT forcings. However, increasing trends of PI occur for the MME of NAT 

and OA forcings, which are opposite to the observation (Figure 6b). These results are consistent 

with the above findings concerning the spatial distribution of trends in PI. In terms of the 

interannual and interdecadal variations of SHDEs over NEC, all of the simulations fail to 
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reproduce these observed changing characteristics (Figure 6c). Thus, the possible impacts of 

these external forcings on the long-term changes of SHDEs over NEC are further explored in 

the following analyses. 

Above evidences indicate that the region of NEC has experienced increased SHDEs during 

the period from 1961 to 2005. The historical simulation and external forcings such as GHG and 

ANT can reproduce the change features of SHDEs over NEC, whereas the other external 

forcings, including NAT and OA, fail to reproduce these features. In the following section, the 

optimal fingerprinting method is applied to explore the extent to which these external forcings 

can exert influences on the changes of SHDEs over NEC. 

3.2 Detection and attribution of SHDEs over NEC 

 In the following, the optimal fingerprinting method is used to investigate the influence of 

the given external forcings on changes in SHDEs over NEC. According to Section 2.2.3, the 

observational PI series averaged over NEC are regressed onto the MME of the six chosen 

models with respect to individual external forcings (ALL, GHG, ANT, NAT, and OA). 

Figure 7a shows the best estimations and the 90% uncertainty ranges of scaling factors for 

the trend component of PI series in response to different external forcings. For detection, the 

90% (5%–95%) uncertainty range of the scaling factors should exclude zero, and its best 

estimation should be close to unity (Allen and Stott 2003). The 90% uncertainty ranges of ALL, 

GHG, and ANT forcings are larger than zero, suggesting that these signals are detectable 
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according to the above principles. The p-values for them are larger than 0.1 based on the 

residual consistency test (significant at 90% confidence level), suggesting a good fit of these 

regression models compared with the observation (Ribes et al., 2013). Best estimates for ALL 

and ANT forcings are close to unity, indicating that they have good resemblances to the 

observed PI trends. However, the signals of NAT and OA forcings fail to be detected, and their 

negative scaling factors suggest the opposite effect on the changes in SHDEs over NEC, which 

are consistent with the above analyses in Section 3.1. Both the NAT forcing and OA forcing 

lack a primary component to be a predictor, thus these two regression models are invalid 

(Zhang et al., 2013; Li et al., 2017). 

Figure 7b further shows the fingerprints of PI variations in response to external forcings. 

Results suggest that none of these external forcings can be detected according to the above 

principles. Similar results can also be found for the original time series (Figure S4). 

Consequently, the influence of human activities (GHG and ANT) and historical simulation are 

detectable in terms of the increasing trend of SHDEs over NEC. However, the interannual and 

interdecadal variations of SHDEs over NEC are not detected by external forcings, which indeed 

might be linked to internal variability (e.g. Li et al., 2018a). 

To estimate the increased SHDEs attributed to different forcings, we further calculate the 

attributable PI changes based on the method suggested in Section 2.2.3. Figure 7c shows the 

results of the attributable changes in the trend part of PI. In this study, PI is observed to decrease 
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by –0.21 (–0.33 to –0.09), indicating that the SHDEs over NEC increased over the past half-

century. Similar changes can also be found for the GHG, ANT, and ALL simulations. PI is 

estimated to decrease by –0.16 (–0.31 to –0.01) for GHG forcing, by –0.15 (–0.30 to –0.01) for 

ANT forcing, and by –0.17 (–0.34 to –0.01) for ALL forcing. These attributable changes in PI 

are consistent with the observation. However, the median attributable changes in PI for NAT 

and OA forcings are quite small, with values of –0.04 and –0.08, respectively. In addition, the 

90% confidence intervals for NAT and OA forcings are not consistent with the observation. 

Therefore, the effects of NAT and OA forcings with respect to influence on changes in PI trend 

are rather small, but the attributable changes in PI trend with the inclusion of human activity 

(ALL, GHG, and ANT) well resemble the observation, suggesting that the human influence 

could noticeably increase the occurrences of SHDEs over NEC.  

3.3 Future changes in summer SHDEs over NEC 

 The above analyses suggest that anthropogenic activity may increase the occurrences of 

SHDEs over NEC. Besides, previous studies also indicated that there might be more extreme 

events (Sun et al., 2018) and more drought events across China in the future (Chen and Sun, 

2017a; Dai and Zhao, 2017; Li et al., 2018b), which have great impacts on the security of socio-

economic systems (Yu et al., 2018). The issue of how the severity and the occurrence 

probability of SHDEs over NEC change due to the continuous GHG emissions in the future 

are thus investigated under different emission scenarios of RCP4.5 and RCP8.5.  
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 Figure 8 shows the temporal series of the spatially averaged PI series over NEC during the 

period from 1961 to 2100. Here, we combine the historical datasets (from 1961 to 2005) and 

the future datasets (from 2006 to 2100) under RCP4.5 and RCP8.5 scenarios together. The 

results based on the MME of six chosen models show an evident decreasing trend of PI in the 

future, suggesting an increasing occurrence of SHDEs over NEC (corresponding to the lower 

value of PI) in the future. The occurrence probability for SHDEs over NEC mainly presents a 

higher value in the RCP8.5 scenario than that in the RCP4.5 scenario. Specifically, the severe 

SHDEs (with PI less than 0.1, see the dashed line in Fig. 8) are predicted to occur once every 

6–7 years by the end of the 21st century (2080–2099) based on the MME of the six chosen 

models in the RCP4.5 scenario, while it will constantly occur (all of the PI values will be less 

than 0.1) in the RCP8.5 scenario by the end of the 21st century (2080–2099). Further analyses 

suggest that the historical 20-year return period events during 1961–2005 (with 45-year period) 

will occur once every seven years in the RCP4.5 scenario during 2055–2099 (with 45-year 

period), and it will occur once every three years in the RCP8.5 scenario during 2055–2099 

(with 45-year period) calculated by the Eqs. (3)–(4). 

4 Discussion 

To verify our results further, another popular drought index known as SPEI (Vicente-

Serrano et al., 2010) is also used in this study. SPEI shows a good capability to monitor drought 

events over China and is also a type of probability-based index (Chen and Sun 2015b). Based 
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on the observational temporal series of SPEI, a decreasing trend of summer drought events 

over NEC (Figure S5b) is evident, accompanied by interdecadal and interannual variability 

(Figures S5a, c). The decreasing trend of SPEI (corresponding to an increasing trend of drought 

events over NEC) can be captured by the ALL, GHG, and ANT forcings while no significant 

trends are shown for NAT and OA (Figure S5b). These results are similar to those based on PI 

(Figure 6). Based on the optimal fingerprinting method, we observed that ALL, GHG, and ANT 

forcings can be detected in terms of the trend of SPEI (Figure S6a), with all of the p-values 

greater than 0.1 based on the residual consistency test. However, the NAT and OA forcings still 

are not detected in terms of the series of SPEI (Figure S6a). Besides, the variability part fails 

to be detected (Figure S6b) in response to external forcings, for that all of the corresponding p-

values are smaller than 0.1 based on the residual consistency test. These findings are also 

consistent with the results of the PI (Figure 7). In terms of the attributable changes in SPEI 

(Figure S7), the results also suggest that ALL, GHG, and ANT forcings satisfactorily reproduce 

the observational changes in SPEI, whereas the other two forcings fail. Thus, the increased 

SHDEs over NEC is a robust response to the strengthened anthropogenic activities.  

5 Conclusion 

In summary, the SHDEs over NEC increased significantly during the past century, and the 

historical simulation and the external forcings, including GHG, ANT, and ALL can reproduce 

this feature from both spatial distribution and temporal variations. Based on the optimal 
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fingerprinting method, the ALL, ANT and GHG forcings can be detected. Additionally, the 

attributable changes in PI trend for ALL, ANT and GHG forcings well capture the observational 

changes in PI. On the other hand, the results suggest that the NAT and OA forcings have almost 

no contribution to the observational changes in PI trend. Therefore, the anthropogenic activity 

may be an important factor that influences the increased SHDEs over NEC where greenhouse 

gas emissions may be the dominant factor for the detected response. Furthermore, the region 

of NEC is expected to face increased and more severe SHDEs in the future.  
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Table 1. List of run information for the different experiments. The historical simulations 

include ALL (natural plus anthropogenic forcing), GHG (greenhouse gas forcing), and NAT 

(natural forcing) runs from 1961 to 2005. The future projections span the period from 2006 to 

2100. The numbers in the first three columes indicate the ensemble members of external 

forcing, the numbers in the fourth colume indicate the number of 45-year non-overlapping 

sections of CTL, and the ensemble of r1i1p1 is considered in terms of future simulations. Bold 

indicates the six models that are positively correlated with the observation for the trends of 

both SAT and precipitation over NEC during the period from 1961 to 2005.   

 
ALL 

[# of 

runs] 

GHG 

[# of 

runs] 

NAT 

[# of 

runs] 

CTL 

[# of 45-yr 

chunks] 

RCP4.5 

RCP8.5 

bcc-csm1.1 3 1 1 5 r1i1p1 

BNU-ESM 1 1 1 5 r1i1p1 

CanESM2 5 5 5 5 r1i1p1 

CNRM-CM5 10 6 6 5 r1i1p1 

CSIRO-Mk3.6.0 10 5 5 5 r1i1p1 

GFDL-CM3 5 3 3 5 r1i1p1 

GFDL-ESM2M 1 1 1 5 r1i1p1 

HadGEM2-ES 4 4 4 5 r1i1p1 

IPSL-CM5A-LR 6 6 3 5 r1i1p1 

IPSL-CM5A-MR 3 3 3 5 r1i1p1 

MIROC-ESM 3 3 3 5 r1i1p1 

MIROC-ESM-CHEM 1 1 1 5 r1i1p1 

MRI-CGCM3 5 1 1 5 r1i1p1 

NorESM1-M 3 1 1 5 r1i1p1 

total 60 41 38 70 14 
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Figure 1. Concurrent return periods of precipitation deficiency and high temperature over 

northeastern China in the summer season (June, July, and August) during 1961–2005. The blue 

dots are for historical observations, and the isolines for return period levels of 10: 10: 60 from 

left to right. Units for return period: years. The pentagram indicates the year of 2000. 
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Figure 2. Observed linear trends of (a) surface air temperature (°C/yr) and (b) precipitation 

(mm/yr) during the summer season (June, July, and August) over northeastern China from 1961 

to 2005 based on CN05.1. The dotted regions suggest that the trend is significant at 90% 

confidence level based on the Mann-Kendall non-parametric test. 

http://vsp.pnnl.gov/help/Vsample/Design_Trend_Mann_Kendall.htm
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Figure 3. Plots of linear trends of the summer mean (a) surface air temperature (°C/yr) and (b) 

precipitation (mm/yr) over NEC from 1961 to 2005 for historical simulations (ALL forcings). 

Results from the multi-model ensemble median (MME) of the fifteen models and the individual 

model are both shown. The dotted regions suggest that the trend is significant at 90% 

confidence level based on the Mann-Kendall non-parametric test. 

http://vsp.pnnl.gov/help/Vsample/Design_Trend_Mann_Kendall.htm
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Figure 4. Linear trends of the probability-based index (PI) for (a) observation based on CN05.1 

and (b)–(h) historical simulations during the summer season (June, July, and August) over 

northeastern China from 1961 to 2005. The results from (b) the MME of the six chosen models 

and (c)–(h) the individual six models are both shown. The numerical values in each panel show 

the spatial correlation between the observation and models. The dotted regions for observation 

and individual models suggest that the trend is significant at 90% confidence level based on 

the Mann-Kendall non-parametric test, and the dotted regions in MME indicate that more than 

70% of the six individual models have the same sign as the MME. 

http://vsp.pnnl.gov/help/Vsample/Design_Trend_Mann_Kendall.htm
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Figure 5. Linear trends of the probability-based index (PI) for (a)–(g) anthropogenic forcings 

and (h)–(n) greenhouse gas emissions during the summer season (June, July, and August) over 

northeastern China from 1961 to 2005. The results from the MME of the six chosen models 

and the individual six model are both shown. The numerical values in each panel show the 

spatial correlation between the observation and models. The dotted regions for observation and 

individual models indicate that the trend is significant at 90% confidence level based on the 

Mann-Kendall non-parametric test, and the dotted regions in MME indicate that more than 70% 

of the six individual models share the same sign as the MME. 

http://vsp.pnnl.gov/help/Vsample/Design_Trend_Mann_Kendall.htm
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Figure 6. Temporal series of (a) original, (b) trend part, and (c) variability part of PI anomalies 

averaged over NEC from 1961 to 2005 based on the MME of the chosen six CMIP5 models. 
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Figure 7. Best estimates of scaling factors of PI based on optimal fingerprinting analyses for 

(a) trend part and (b) variability part. The error bars indicate the 5%–95% uncertainty range. 

(c) Estimates of observed PI changes and the attributed changes in response to different external 

forcings based on the trend part of PI. The error bars indicate the 5%–95% uncertainty range, 

which vary from negative infinity to positive infinity for NAT and GHG in the variability part 

(Fig. 7b). 
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Figure 8. Temporal series of PI averaged over NEC from 1961 to 2100 during the historical 

period (black) and during the future period based on RCP4.5 (blue) and RCP8.5 (red). The 

colored solid lines indicate the MME of the six models, and the corresponding shadings 

indicate the model spreads. The black dashed line represents the value of 0.1. 

 

 


