新闻阅读
Dissecting Performances of PERSIANN-CDR Precipitation Product over Huai River Basin, China
作者:重点实验室               发布时间:2019/11/8 16:14:10              浏览量:18

Article

Dissecting Performances of PERSIANN-CDR Precipitation Product over Huai River Basin, China

REMOTE SENSING

Sun Shanlei,Zhou Shujia,Shen Huayu,Chai Rongfan,Chen Haishan,Liu Yibo,Shi Wanrong,Wang Jia,Wang Guojie,Zhou Yang

Abstract

Satellite-based precipitation products, especially those with high temporal and spatial resolution, constitute a potential alternative to sparse rain gauge networks for multidisciplinary research and applications. In this study, the validation of the 30-year Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) daily precipitation dataset was conducted over the Huai River Basin (HRB) of China. Based on daily precipitation data from 182 rain gauges, several continuous and categorical validation statistics combined with bias and error decomposition techniques were employed to quantitatively dissect the PERSIANN-CDR performance on daily, monthly, and annual scales. With and without consideration of non-rainfall data, this product reproduces adequate climatologic precipitation characteristics in the HRB, such as intra-annual cycles and spatial distributions. Bias analyses show that PERSIANN-CDR overestimates daily, monthly, and annual precipitation with a regional mean percent total bias of 11%. This is related closely to the larger positive false bias on the daily scale, while the negative non-false bias comes from a large underestimation of high percentile data despite overestimating lower percentile data. The systematic sub-component (error from high precipitation), which is independent of timescale, mainly leads to the PERSIANN-CDR total Mean-Square-Error (TMSE). Moreover, the daily TMSE is attributed to non-false error. The correlation coefficient (R) and Kling-Gupta Efficiency (KGE) respectively suggest that this product can well capture the temporal variability of precipitation and has a moderate-to-high overall performance skill in reproducing precipitation. The corresponding capabilities increase from the daily to annual scale, but decrease with the specified precipitation thresholds. Overall, the PERSIANN-CDR product has good (poor) performance in detecting daily low (high) rainfall events on the basis of Probability of Detection, and it has a False Alarm Ratio of above 50% for each precipitation threshold. The Equitable Threat Score and Heidke Skill Score both suggest that PERSIANN-CDR has a certain ability to detect precipitation between the second and eighth percentiles. According to the Hanssen-Kuipers Discriminant, this product can generally discriminate rainfall events between two thresholds. The Frequency Bias Index indicates an overestimation (underestimation) of precipitation totals in thresholds below (above) the seventh percentile. Also, continuous and categorical statistics for each month show evident intra-annual fluctuations. In brief, the comprehensive dissection of PERSIANN-CDR performance reported herein facilitates a valuable reference for decision-makers seeking to mitigate the adverse impacts of water deficit in the HRB and algorithm improvements in this product.

DOI: 10.3390/rs11151805

© 2019 气象灾害教育部重点实验室   版权所有 NUIST备80040
地址:江苏省南京市宁六路219号 气象灾害教育部重点实验室 邮编:210044
技术支持: